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1. Introduction and Background

The 2001 Workshop convened by the Political Science Program at the 
National Science Foundation (NSF).

Why was EITM created? 
1. Motivation. 
2. Problem Diagnosis.
3. Remedies.



Motivation

Motivation 1: Perceived weakness of the political science discipline at National Science 
Foundation (NSF).
• Granato and Scioli (2004) cite the following report relating how political science was 

perceived at NSF.
“The recent Report of the APSA Ad Hoc Committee on the National Science Foundation found that political science had
been characterized by as, “not very exciting, not on the cutting edge of the research enterprise, and in certain quarters
as journalistic and reformist.” We disagree with this statement and believe there has been considerable improvement
in political science in the past 40 years through the use of formal models, case studies, and applied statistical modeling
(page 313).”

• This negative perception also led to skepticism as to whether the political science discipline –
and its current training practices – was methodologically equipped to improve upon the 
existing methodological status quo. Social, Behavioral and Economic Sciences Division 
Director Bill Butz stated all was not certain about the outcome:

“Sometimes that works and sometimes you’re just pushing on a string because the field isn’t ready for it yet... And 
getting you all here and I judge from the papers it resonated with you, too. And we’ll see in the succeeding year or 2 or 
3 whether this is pushing on a string or whether it's really lighting a fire (EITM Workshop Transcript 2001: 18).”



Motivation

Motivation 2: Old antagonisms and the methodological status quo.
• Workshop participants were from varied methodological backgrounds where long 

antagonisms had existed and led to splits in departments as well as various subfields. But, 
EITM workshop panelist Dina Zinnes expressed hope that these old antagonisms between 
formal and empirical modelers could be overcome and lead to some meaningful advice.

“First let me just say what a pleasure it is to be amongst this group of people. I have to admit that when I got those
initial memos I sort of put them on the side burners, thinking, well, okay, I’ll look at them eventually, because I was
worried about the fights and the antagonisms that I thought would emerge. And it was with great delight that I read
those and discovered, my gosh, there really is a consensus going on here. And listening to people this morning
confirms that. I find that it’s wonderful to see that both the empirical and statistical side and the modeling side really
all sort of agree on certain things. And I think that’s a fabulous beginning (EITM Workshop Transcript 2001: 113-
114).”



Motivation

Motivation 3: Weaknesses in research design for NSF Competitions.
• In his role as Division Director over a six year period, Director Butz reviewed and approved over 16,000 proposals. He stated: 

“And of those 16,000, about 2 years ago I formulated just a sort of a stylized FAQ what the principal ways are to be sure that you don’t get
money from NSF. And out of all the possible reasons, there were three that came to the front…Now, it varies some across fields. And I don’t
mean to say that this is particularly true of political science, but I want to show it to you because it may give you an additional context for the
reasons why scientific proposals fail in the social and behavioral sciences –how to get zero money (EITMWorkshop Transcript 2001: 14).”

• One reason is even though basic conceptualization exists, there is still a failure to connect theories to tests:
“there will be a well-developed deductive theory at the beginning, and then the next section will be data, the next section will be empirical
equations, and you’ll look at the empirical stuff and it's just – it’s not connected, or it’s only connected in the vaguest sense (EITM Workshop
Transcript 2001: 14-15).”

• Another reason in his summary was inadequate specification:
“I don’t know how many panels I’ve sat in where people say, well, you know, we can't really tell how they’re going to form this proxy from
these variables, or we can’t really tell how they’re going to get over the statistical problem with such-and-such (EITM Workshop Transcript
2001: 17).”

• In concluding his presentation Director Butz states:
“There are many other things that are wrong with proposals, but these two –something wrong with the theory and something wrong with the
data or the statistical methods are two of the three most common ones across – and I really don’t think there are very many exceptions to this
– across the 18, I think now 19, programs in the social, behavioral, and economic sciences here. So I thought I would just point that out (EITM
Workshop Transcript 2001: 16-17).”



Problem Diagnosis: Compartmentalization,  Siloed Training and 
Thinking in Methodology
“Isolation – compartmentalization – of fields and sub-fields is the status quo in political science…current field and
sub-field structure exacerbates the separation between formal and empirical modeling. For example, focusing on a
question that is particular to American Politics increases specialization and, turn, discourages integrating
approaches and theories that would best come about from studying a particular research question in many countries
(EITM Report 2002: 6).”

• Moreover, field and sub-field isolation reinforces separation between formal and empirical analysis including the
belief that an:

“outdated perspective about formal and empirical analysis is the assertion that these technical-analytical approaches are
simply interesting intellectual enterprises that lack political and social relevance (EITM Report 2002: 6).”

• The consequence of this divide is not neutral in its effect; indeed the effect can be negative. In particular:
“a good deal of research in political science is competent in one technical area, but lacking in another, that is, a formal
approach with substandard (or no) empirical tests or an empirical approach without formal clarity. Such impaired
competency contributes to a failure to identify the proximate causes explicated in a theory and, in turn, increases the
difficulty of achieving a meaningful increase in scientific knowledge (EITM Report 2002: 1).”



Problem Diagnosis: Compartmentalization,  Siloed Training and 
Thinking in Methodology
Siloed Training
• Consequences for Formal Modeling

“Many formal modelers feel uncomfortable with powerful empirical concepts such as social norms, limited rationality, and
psychological factors such as personality and identity. The usual argument is that formal models are not meant to fit data, or
should not be. While there is much to be learned from pure theory and abstract formal arguments, the formal modeling
isolation reinforces distance from basic circumstances that these abstract models could help to illuminate. This isolation also
contributes to the basic misunderstanding noted above about the great attributes formal modeling brings to the scientific
process (EITM Report 2002: 6-7).”

• Consequences for Empirical Modeling
“Empirical modeling isolation, on the other hand, is equally guilty of not advancing scientific understanding when it fails to
incorporate their “more complex and general assumptions” into a mathematically identified model with direct and testable
implications. Instead “errors” or “confounding variables” that derail the inferential process are treated as statistical problems
that require only statistical fixes (EITM Report 2002: 7).”



Problem Diagnosis: Compartmentalization,  Siloed Training and 
Thinking in Methodology
Factors reinforcing the status quo:
1. The Intellectual Investment: Scholars have to invest in different skill sets.
2. Training Differences: Empirical modelers devote their energies to data collection, measurement, and statistical matters, and

formal modelers focus on mathematical rigor.
3. Research Practice: For empirical modelers, model failures lead to emphasis on additional statistical training or more

sophisticated uses of statistics – usually to “patch over” – a model failure. Formal modelers, on the other hand, deal with model
controversies by considering alternative mathematical formulations but this is usually done piecemeal.

• These implementation challenges are deeply rooted in the academic community – fostered by career incentives – taking years
to overcome (Poteete, Janssen, and Ostrom 2010: 18-24). Consequently, “Old habits” learned in graduate school inhibit the
desire to make the changes in skill development. But, the situation is worse since many things learned in graduate school tend
to become out-of-date by mid-career.

• When methodological instruction reflects these status quo forces, successive generations will only repeat the shortcomings
Indeed, disciplines failing to provide incentives for this type of risk taking and re-tooling reduce the threat of an:

“assembly-line model of research production that imperils innovative theories and methodologies and, in turn, scientific
breakthroughs. One could make the argument that EITM or initiatives like it are unnecessary because the unfettered marketplace of
ideas expedites best scientific practices and progress. But, it is precisely because there are significant rigidities (training and
otherwise) in the current academic setting (imperfect competition) which makes EITM-type initiatives not only necessary – but
imperative (EITM Report 2002: 8).”

• We now see, and have repeatedly seen, practices unsuitable for addressing complex issues. Invalid policy prescriptions take
place: prediction without basic understanding of how a system under study works is of little scientific or social value.



Proposed Remedies

The 2001 EITM Workshop participants recommended that the Political Science
Program at the NSF address the technical-analytical divide between formal and
empirical approaches in three priority areas:

1. Education: Training and Retraining.

2. Dissemination of Knowledge: Conferences and Workshops.

3. Research: Establishment of Research Work Groups.



Deliverables from the 2001 EITM Workshop

A key achievement of the EITM initiative over the past years has been the EITM
Summer Institutes. So far, the Summer Institutes have taken place or will take place at:

• Harvard University (2002)
• University of Michigan (2003, 2006, 2009, 2018)
• Duke University (2004, 2008, 2014, 2016, 2020, 2021)
• UC-Berkeley (2005, 2010, 2013, 2017, 2022)
• UCLA (2007)
• Washington University, St. Louis (2003-2009)
• University of Chicago (2011)
• Princeton University (2012, 2015, 2023)
• University of Houston (2012-2017, 2019)
• Emory University (2019)



2.  EITM Definition and EITM Framework

• EITM is a method – even a mindset – where researchers treat formal and empirical analysis
as linked entities intended to create a dialogue between theory and test.

• There is more than one way to link formal and empirical analysis.

• Below we present the EITM framework that was created at NSF.



2.  EITM Definition and EITM Framework

The elements of EITM – the NSF version – involve a three-step framework:
Step 1. Identify and Relate Focal Concepts

• Concepts of particular concern in this framework reflect many overarching social and behavioral
processes. Examples include (but are not limited to):
• decision making
• bargaining
• expectations
• learning
• elements of social interaction (strategic and non-strategic)

• It is also important to find an appropriate statistical concept to match with the theoretical concept.
Examples of applied statistical concepts include (but are not limited to):
• persistence
• measurement error
• nominal choice
• simultaneity
• prediction



2.  EITM Definition and EITM Framework

Step 2. Developing Formal and Applied Statistical Analogues.
• To link concepts with tests, we need analogues. Recall that an analogue is a device representing a concept

via a continuous and measurable variable or set of variables. Examples of analogues for the behavioral
(formal) concepts such as decision making, expectations, learning, and strategic interaction include (but are
not limited to):
• decision theory (e.g., utility maximization)
• conditional expectations (forecasting) procedures
• adaptive and Bayesian learning (information updating) procedures
• game theory

• Examples of applied statistical analogues for the applied statistical concepts of persistence, measurement
error, nominal choice, simultaneity, and prediction include (respectively):
• persistence
• autoregressive estimation
• error-in-variables regression
• discrete choice modeling
• multi-stage estimation (e.g., two-stage least squares) and spatial econometrics
• point estimates and distributions

Step 3. Unify and Evaluate the Analogues



3.  The Benefits of Ensuring a Dialogue Between Theory and Test

EITM can fit with existing research strategies in three ways:

1. Evolution of scientific accumulation.
2. Comparing contradictory ideas.
3. Test versus consistency evaluation.



How EITM Informs Debates

• Social scientists face two common challenges face in their research undertaking: developing
useful theories that are realistic representations of human behavior on the one hand and
making use of feedback from empirical observations in refining the theory on the other.

• In the scenario where the two processes are not linked – such as in the case where theoretical
and empirical work is carried out separately in a silo – researchers are unable to obtain the
benefits from the interaction of the two activities.

• The dilemmas that theory is ahead of data or data are ahead of theory can be dealt with more
effectively employing the EITM approach.



4.  Application: Economic Voting (Chapter 4)

Alesina and Rosenthal Competency Model of Economic Voting

• Step 1: Relating Expectations, Uncertainty, and Measurement Error
• Step 2: Analogues for Expectations, Uncertainty, and Measurement Error

Empirical Analogues: Measurement Error and Error and Variables Regression (pages 67-68)
Formal Analogues: Conditional Expectations, Linear and Recursive Projections (pages 71-74)



4.  Application: Economic Voting (Chapter 4)

Empirical Analogues: Consider estimating the following equation:

where .

The expected value of !𝛽! is:

The ratio of defines the degree of attenuation. It is also termed
as the signal extraction ratio or reliability ratio.
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ŷt = ŷn + � (⇡t � ⇡e
t ) + "t

✏t = ⌘t + ⇠t

⌘t = µt + ⇢µt�1

Et (⌘t+1) = Et (µt+1) + ⇢E (µt|ŷt � ŷn � ⇢µt�1)
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4.  Application: Economic Voting (Chapter 4)

Formal Analogues: Consider Alesina and Rosenthal Economic Voting model:

The variable 𝜂" captures the idea of government competence, which can persist and support
reelection. It follows the following MA(1) process expressed above.
Voters forecast the government competence 𝜂"#! at time t according to the following law of
motion:

where .
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ŷt = ŷn + � (⇡t � ⇡e
t ) + "t,

where ✏t = ⌘t + ⇠t, and ⌘t = µt + ⇢µt�1

Et (⌘t+1) = Et (µt+1) + ⇢E (µt|ŷt � ŷn � ⇢µt�1)
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4.  Application: Economic Voting (Chapter 4)

Step 3: Unifying the Analogues (link the analogues, pages 76-77)

Note the prior results show that the empirical and formal analogues are identical in form and,
therefore , show a direct and behavioral link between theory and test.



EITM in Practice
Information Diffusion and Inflation Expectations

EITM



Information Diffusion & Inflation Expectations (Chapter 7)

Empirical Implications: Granato and Krause (GK) (2000)
• Examining the connection between information and expectations and test for the diffusion of
information among the public

• Information transmission is asymmetric, which means predictions of more informed citizens
influence the predictions of their less informed counterparts.

Theoretical Models: Granato, Guse andWong (GGW) (2008)
• Introducing a process of information diffusion in a modified cobweb model with a Stackelberg
framework, where there are two types of agents: first and second moving agents.
• First moving (leading) agents: More informed citizens
• Second moving (following) agents: Less informed citizens

• The leading agents form initial forecasts, and the following agents observe and use the leading agents’
forecasts when forming their expectations.

EITM: Granato, Lo andWong (GLW) (2011)
• EI + TM =GK (2000) + GGW (2008) = GLW (2011) = EITM
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Step 1: Relating Social Interaction, Expectations, and Learning to Simultaneity and Prediction
Error
• Social Interaction: Information diffusion, motivated by GK (2000) and GGW (2008)

• A situation where less informed agents can receive information from more informed
agents for the purpose of enhancing their — the less informed agents — forecast accuracy

• The relation between less- and more-informed agents — social interaction — involves
expectations and learning.

• These behavioral traits are linked with forecast error (forecast accuracy)
à Results: new equilibrium predictions – the Boomerang Effect
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Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error

Simple Macroeconomic Model
Lucas Aggregate Supply:

where 𝜃 > 0, 𝑝" and 𝑦" are the price and output level at time 𝑡, respectively, *𝑦 is the natural
rate of output level, 𝐸"$!∗ 𝑝" is the expectation of the price level at time t.
Aggregate Demand (Quantity Theory of Money)

where 𝑚" is the money supply and 𝑣" = 𝜅 + 𝜆𝑤"$! + 𝜀" is a velocity shock, and monetary
policy rule:

where 𝜙 > 0, 6𝑚 is a constant money stock, 𝜖" and 𝜉" are iid stochastic shocks.
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less- and more-informed agents — social interaction — involves expectations and learning.6 When these

behavioral traits are linked with forecast error (forecast accuracy), the result is a set of distinct predictions

based on these behavioral concepts and new equilibrium predictions about behavior. The EITM framework

allows for an investigation of a boomerang effect.

7.3 Step 2: Analogues for Social Interaction, Expectations, Learn-

ing, Simultaneity, and Prediction Error

In developing a formal model of inflation’s behavior, Granato et al. (2011) link a standard Lucas aggregate

supply model (Lucas 1973) with an aggregate demand function (Evans and Honkapohja 2001). The

aggregate supply and demand functions, respectively, are:

yt = ȳ + ✓
�
pt � E⇤

t�1pt

�
+ ✏t, (7.1)

where ✓ > 0, and:

mt + vt = pt + yt. (7.2)

The variables are as follows: pt and yt are the price and output level at time t, respectively, ȳ is the natural

rate of output level, E⇤
t�1pt is the expectation (may not be rational) of the price level at time t, mt is

the money supply, and vt is a velocity shock. If agents form expectations rationally, it suggests people

use all the available information to make the best possible forecasts of the economic variables relevant

to them (Lucas 1972). In more technical terms, rational expectations (RE) is an equilibrium condition

where the subjective expectations of some variable of interest are equivalent to the objective mathematical

expectations conditional on all available information at the time the expectation is formed.7

It is assumed velocity depends on some exogenous observables, wt�1:

vt =  + �wt�1 + "t, (7.3)
6Granato et al. (2008) and Granato et al. (2011) investigate the social interaction of inflation forecast behavior in a

simple supply and demand model.
7See Chapter 5, Section 5.6.4 for the description of rational expectations.
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where � > 0, and the money supply mt is determined by the monetary policy rule:

mt = m̄ + pt�1 + �wt�1 + ⇠t, (7.4)

where � > 0, m̄ is a constant money stock, and ✏t, "t, and ⇠t are iid stochastic shocks.

Using equations (7.1) through (7.4) and defining ⇡t = pt � pt�1 and E⇤
t�1⇡t = E⇤

t�1pt � pt�1, inflation

dynamics are presented as follows:

⇡t = ↵ + �E⇤
t�1⇡t + �wt�1 + ⌘t, (7.5)

where:

↵ = (1 + ✓)�1 ( + m̄ � ȳ) ,

� = ✓ (1 + ✓)�1 2 (0, 1) ,

� = (1 + ✓)�1 (� + �) , and

⌘t = (1 + ✓)�1 (✏t + "t + ⇠t) .

Equation (7.5) is a self-referential model where inflation depends on its expectations E⇤
t�1⇡t, exogenous

variables wt�1, and the stochastic shocks ⌘t. Since RE is assumed, the unique rational expectations

equilibrium (REE) is:

⇡ = āREE + b̄REEwt�1 + ⌘t, (7.6)

where āREE = ↵/ (1 � �), and b̄REE = �/ (1 � �) . From the equilibrium (7.6), agents can make rational

forecasts Et�1⇡t if they have the full information set wt�1 at time t � 1 such that:

Et�1⇡t = āREE + b̄REEwt�1. (7.7)

A body of research suggests forecast accuracy is associated with education, a common proxy for in-

formation levels (wt�1) (Granato and Krause 2000; Carlson and Valev 2001). Agents possessing more

education have more accurate forecasts. An extension of this finding is a second implication relating to
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Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error

Solving the macro equilibrium, we have the following reduced form of inflation dynamics:

where , , and the following parameters:
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where āREE = ↵/ (1 � �), and b̄REE = �/ (1 � �) . From the equilibrium (7.6), agents can make rational

forecasts Et�1⇡t if they have the full information set wt�1 at time t � 1 such that:
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� = ✓ (1 + ✓)�1 2 (0, 1) ,

� = (1 + ✓)�1 (� + �) , and

⌘t = (1 + ✓)�1 (✏t + "t + ⇠t) .

Equation (7.5) is a self-referential model where inflation depends on its expectations E⇤
t�1⇡t, exogenous

variables wt�1, and the stochastic shocks ⌘t. Since RE is assumed, the unique rational expectations

equilibrium (REE) is:
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Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error

Solving the macro equilibrium, we have the following reduced form of inflation dynamics:

The rational expectational equilibrium can be written as:

where and

According to the above equilibrium, agents make rational forecasts                 with the full 
information 𝑤"$! at time 𝑡 − 1: 
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⇡ = āREE + b̄REEwt�1 + ⌘t, (7.6)
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t�1⇡t = E⇤

t�1pt � pt�1, inflation

dynamics are presented as follows:

⇡t = ↵ + �E⇤
t�1⇡t + �wt�1 + ⌘t, (7.5)

where:

↵ = (1 + ✓)�1 ( + m̄ � ȳ) ,

� = ✓ (1 + ✓)�1 2 (0, 1) ,

� = (1 + ✓)�1 (� + �) , and

⌘t = (1 + ✓)�1 (✏t + "t + ⇠t) .

Equation (7.5) is a self-referential model where inflation depends on its expectations E⇤
t�1⇡t, exogenous

variables wt�1, and the stochastic shocks ⌘t. Since RE is assumed, the unique rational expectations

equilibrium (REE) is:

⇡ = āREE + b̄REEwt�1 + ⌘t, (7.6)

where āREE = ↵/ (1 � �), and b̄REE = �/ (1 � �) . From the equilibrium (7.6), agents can make rational

forecasts Et�1⇡t if they have the full information set wt�1 at time t � 1 such that:

Et�1⇡t = āREE + b̄REEwt�1. (7.7)

A body of research suggests forecast accuracy is associated with education, a common proxy for in-

formation levels (wt�1) (Granato and Krause 2000; Carlson and Valev 2001). Agents possessing more

education have more accurate forecasts. An extension of this finding is a second implication relating to
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Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error
• Assuming that not all agents obtain the full set of information 𝑤"$! at time 𝑡 − 1 for making

rational forecasts.
• Forecast accuracy is associated with education, a common proxy for information levels (𝑤"$!),

according to Granato and Krause (2000).
• As a result, agents with a smaller information set have incentives to interact with those who

obtain more (or full) information when making forecasts.
• We assume the followings:

• More informed agents receive the full information set: 𝑤"$! = 𝑥"$!, 𝑧"$! to make
their forecasts.

• Less informed agents receive a partial information set: 𝑥"$!, but they also interact with
the more informed agents to obtain their expectations =𝜋 = 𝐸&,"$!∗ 𝜋" + 𝑒"$! to make
their forecasts.



Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error
• As a result,

• High-informed group form the following expectations:

• Low-informed group forms the following expectations:

where and is the measurement/interpretation error.
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and:

b⇡t�1 = E⇤
H,t�1⇡t + et�1, (7.10)

where et�1 s iid (0, �2
e) represents the observational errors which are uncorrelated with vt and wt�1, and

b⇡t�1 is the observed information that Group L obtains from Group H, E⇤
H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H

forms its expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is different since this group possesses the full information set to

forecast inflation:

⇡t = aH + b1Hxt�1 + b2Hzt�1 + vt. (7.11)

In this model, Group L and Group H do not directly obtain RE initially. Instead, Group L and Group H

recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the

political-economic system for periods ti = Ti, ..., t � 1, where i 2 {L, H}. At time t � 1, the information

set for the less-informed group, Group L, is {⇡i, xi, b⇡i}t�1
i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):

E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).
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information diffusion: more-informed agent forecasts and expectations (e.g., with higher education levels)

influence less-informed agent forecasts and expectations (Granato and Krause 2000).

With these findings in mind, take equation (7.5) and partition the information set wt�1 into two parts:

wt�1 = (xt�1, zt�1), where xt�1 is “common” information, and zt�1 represents the “advanced” information:

⇡t = ↵ + �E⇤
t�1⇡t + �1xt�1 + �2zt�1 + ⌘t, (7.8)

where � = (�1, �2) . Following Granato et al. (2008) populations are separated into two groups of agents.

In the spirit of the classic two-step flow model (Lazarsfeld et al. 1944), the groups are separated by the

amount of information and interest they possess. Group L signifies the less-informed group. These agents

are assumed to be less current on political and economic events. Members of the second group, Group

H, are opinion leaders (e.g., issue publics) who are generally up-to-date on political and economic events.

Opinion leaders are key in any information diffusion process since they are recognized by the less-informed

group as having more and better information.

It follows that these two groups possess different information sets (xt�1,wt�1). Group H has the complete

information set of wt�1 = (xt�1, zt�1), while Group L only obtains the common information set xt�1. The

model also assumes that there is a continuum of agents located on the unit interval [0, 1] of which a

proportion of 1 � µ, where µ 2 [0, 1), are agents in Group H who are more informed when forecasting

inflation, and the rest of agents (the proportion of µ) are in Group L.

Agents are interactive. Group L observes Group H’s expectations to make its forecasts (but not vice

versa). However, Group L agents may interpret (or even misinterpret) Group H’s forecasts differently

or may not be able to obtain the exact information from the more-informed agents. The next step is to

introduce a distribution of observational errors, et�1, for Group L during the information diffusion process.8

This gives Group L’s forecasting model of inflation:

⇡t = aL + bLxt�1 + cLb⇡t�1 + vt, (7.9)
8Agents are unable to obtain the exact information from others (Kandel and Zilberfarb 1999). Granato et al. (2011)

assume that a distribution of observational errors et�1 is imposed to indicate the degree of misinterpretation of others’ actions.
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H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H

forms its expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is different since this group possesses the full information set to

forecast inflation:

⇡t = aH + b1Hxt�1 + b2Hzt�1 + vt. (7.11)

In this model, Group L and Group H do not directly obtain RE initially. Instead, Group L and Group H

recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the

political-economic system for periods ti = Ti, ..., t � 1, where i 2 {L, H}. At time t � 1, the information

set for the less-informed group, Group L, is {⇡i, xi, b⇡i}t�1
i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):

E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).

E⇤
H,t�1⇡t = aH + bwt�1

E⇤
L,t�1⇡t = aL + bLxt�1 + cL⇡̂t�1

1

E⇤
H,t�1⇡t = aH + bwt�1

E⇤
L,t�1⇡t = aL + bLxt�1 + cL⇡̂t�1

1

Low-informed groupHigh-informed group
Info. Diffusion Process:   
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and:
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where et�1 s iid (0, �2
e) represents the observational errors which are uncorrelated with vt and wt�1, and

b⇡t�1 is the observed information that Group L obtains from Group H, E⇤
H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H

forms its expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is different since this group possesses the full information set to

forecast inflation:

⇡t = aH + b1Hxt�1 + b2Hzt�1 + vt. (7.11)

In this model, Group L and Group H do not directly obtain RE initially. Instead, Group L and Group H

recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the

political-economic system for periods ti = Ti, ..., t � 1, where i 2 {L, H}. At time t � 1, the information

set for the less-informed group, Group L, is {⇡i, xi, b⇡i}t�1
i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):

E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).
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e) represents the observational errors which are uncorrelated with vt and wt�1, and

b⇡t�1 is the observed information that Group L obtains from Group H, E⇤
H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H

forms its expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is different since this group possesses the full information set to

forecast inflation:

⇡t = aH + b1Hxt�1 + b2Hzt�1 + vt. (7.11)

In this model, Group L and Group H do not directly obtain RE initially. Instead, Group L and Group H

recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the

political-economic system for periods ti = Ti, ..., t � 1, where i 2 {L, H}. At time t � 1, the information

set for the less-informed group, Group L, is {⇡i, xi, b⇡i}t�1
i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):

E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).
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• High-informed group:
• Low-informed group:
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recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the
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i=TL
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i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):
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information diffusion: more-informed agent forecasts and expectations (e.g., with higher education levels)

influence less-informed agent forecasts and expectations (Granato and Krause 2000).

With these findings in mind, take equation (7.5) and partition the information set wt�1 into two parts:

wt�1 = (xt�1, zt�1), where xt�1 is “common” information, and zt�1 represents the “advanced” information:

⇡t = ↵ + �E⇤
t�1⇡t + �1xt�1 + �2zt�1 + ⌘t, (7.8)

where � = (�1, �2) . Following Granato et al. (2008) populations are separated into two groups of agents.

In the spirit of the classic two-step flow model (Lazarsfeld et al. 1944), the groups are separated by the

amount of information and interest they possess. Group L signifies the less-informed group. These agents

are assumed to be less current on political and economic events. Members of the second group, Group

H, are opinion leaders (e.g., issue publics) who are generally up-to-date on political and economic events.

Opinion leaders are key in any information diffusion process since they are recognized by the less-informed

group as having more and better information.

It follows that these two groups possess different information sets (xt�1,wt�1). Group H has the complete

information set of wt�1 = (xt�1, zt�1), while Group L only obtains the common information set xt�1. The

model also assumes that there is a continuum of agents located on the unit interval [0, 1] of which a

proportion of 1 � µ, where µ 2 [0, 1), are agents in Group H who are more informed when forecasting

inflation, and the rest of agents (the proportion of µ) are in Group L.

Agents are interactive. Group L observes Group H’s expectations to make its forecasts (but not vice

versa). However, Group L agents may interpret (or even misinterpret) Group H’s forecasts differently

or may not be able to obtain the exact information from the more-informed agents. The next step is to

introduce a distribution of observational errors, et�1, for Group L during the information diffusion process.8

This gives Group L’s forecasting model of inflation:

⇡t = aL + bLxt�1 + cLb⇡t�1 + vt, (7.9)
8Agents are unable to obtain the exact information from others (Kandel and Zilberfarb 1999). Granato et al. (2011)

assume that a distribution of observational errors et�1 is imposed to indicate the degree of misinterpretation of others’ actions.
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Using equations (7.8) through (7.11) and (7.13), results in the actual law of motion (ALM):

⇡t = ⌦↵ + ⌦xxt�1 + ⌦zzt�1 + ⌦eet�1 + ⌘t, (7.14)

where:

⌦↵ = ↵ + �µaL + � (1 � µ) aH ,

⌦x = �µbL + [�µcL + � (1 � µ)] b1H + �1,

⌦z = [�µcL + � (1 � µ)] b2H + �2, and

⌦e = �µcL.

Equations (7.5), (7.12) and (7.14) represent a system that now incorporates adaptive learning. Both Group

H and Group L use their PLM’s (i.e., equation (7.12)) to update their forecasts of inflation (E⇤
i,t�1⇡t in

equation (7.5)) based on information, qi,t�1.

Evans (1989) and Evans and Honkapohja (1992) show that mapping the PLM to the ALM is generally

consistent with the convergence to REE under least squares learning. Further, assuming agents have

a choice of using one of several forecasting models and that there are equilibrium predictions in these

models, Guse (2005, 2010) refers to a resulting stochastic equilibrium as a “mixed expectations equilibrium”

(MEE).10 Computing the linear projections on equations (7.8), (7.12) and (7.13), the MEE coefficients

result in the following:11
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10In this model, agents have a choice to be either in Group H or in Group L when they form their forecasting models.
11To obtain the MEE, one can solve for the orthogonality condition (OC) using ALM (7.14) and PLM (7.12). For Group

H, the OC is E
�
⇡t � E⇤

H,t�1⇡t

�
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CHAPTER 7. INFORMATION DIFFUSION 179

Using equations (7.8) through (7.11) and (7.13), results in the actual law of motion (ALM):

⇡t = ⌦↵ + ⌦xxt�1 + ⌦zzt�1 + ⌦eet�1 + ⌘t, (7.14)

where:

⌦↵ = ↵ + �µaL + � (1 � µ) aH ,

⌦x = �µbL + [�µcL + � (1 � µ)] b1H + �1,

⌦z = [�µcL + � (1 � µ)] b2H + �2, and

⌦e = �µcL.

Equations (7.5), (7.12) and (7.14) represent a system that now incorporates adaptive learning. Both Group

H and Group L use their PLM’s (i.e., equation (7.12)) to update their forecasts of inflation (E⇤
i,t�1⇡t in

equation (7.5)) based on information, qi,t�1.

Evans (1989) and Evans and Honkapohja (1992) show that mapping the PLM to the ALM is generally

consistent with the convergence to REE under least squares learning. Further, assuming agents have

a choice of using one of several forecasting models and that there are equilibrium predictions in these

models, Guse (2005, 2010) refers to a resulting stochastic equilibrium as a “mixed expectations equilibrium”

(MEE).10 Computing the linear projections on equations (7.8), (7.12) and (7.13), the MEE coefficients

result in the following:11

'̄L =

0

BBBB@

āL
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where .
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and:

b⇡t�1 = E⇤
H,t�1⇡t + et�1, (7.10)

where et�1 s iid (0, �2
e) represents the observational errors which are uncorrelated with vt and wt�1, and

b⇡t�1 is the observed information that Group L obtains from Group H, E⇤
H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H
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i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents
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E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).
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information diffusion: more-informed agent forecasts and expectations (e.g., with higher education levels)

influence less-informed agent forecasts and expectations (Granato and Krause 2000).

With these findings in mind, take equation (7.5) and partition the information set wt�1 into two parts:

wt�1 = (xt�1, zt�1), where xt�1 is “common” information, and zt�1 represents the “advanced” information:

⇡t = ↵ + �E⇤
t�1⇡t + �1xt�1 + �2zt�1 + ⌘t, (7.8)

where � = (�1, �2) . Following Granato et al. (2008) populations are separated into two groups of agents.

In the spirit of the classic two-step flow model (Lazarsfeld et al. 1944), the groups are separated by the

amount of information and interest they possess. Group L signifies the less-informed group. These agents

are assumed to be less current on political and economic events. Members of the second group, Group

H, are opinion leaders (e.g., issue publics) who are generally up-to-date on political and economic events.

Opinion leaders are key in any information diffusion process since they are recognized by the less-informed

group as having more and better information.

It follows that these two groups possess different information sets (xt�1,wt�1). Group H has the complete

information set of wt�1 = (xt�1, zt�1), while Group L only obtains the common information set xt�1. The

model also assumes that there is a continuum of agents located on the unit interval [0, 1] of which a

proportion of 1 � µ, where µ 2 [0, 1), are agents in Group H who are more informed when forecasting

inflation, and the rest of agents (the proportion of µ) are in Group L.

Agents are interactive. Group L observes Group H’s expectations to make its forecasts (but not vice

versa). However, Group L agents may interpret (or even misinterpret) Group H’s forecasts differently

or may not be able to obtain the exact information from the more-informed agents. The next step is to

introduce a distribution of observational errors, et�1, for Group L during the information diffusion process.8

This gives Group L’s forecasting model of inflation:

⇡t = aL + bLxt�1 + cLb⇡t�1 + vt, (7.9)
8Agents are unable to obtain the exact information from others (Kandel and Zilberfarb 1999). Granato et al. (2011)

assume that a distribution of observational errors et�1 is imposed to indicate the degree of misinterpretation of others’ actions.
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7.4 Step 3: Unifying and Evaluating the Analogues

The formal model demonstrates that Group L places a weight c̄L on the observed information from Group H.

Group L makes use of Group H’s expectations (i.e., a higher c̄L) as long as Group L face smaller variation

in observation error when interpreting Group H’s information (i.e., lower �2
e). Linking the formal and

applied statistical analogues shows how expectations and information diffusion create testable dynamics.

To show this, calculate the mean squared error (MSE) for the forecasts of Groups L and H, respec-

tively:14

MSEL =


�2 (1 � c̄L)

1 � � + � (1 � c̄L) µ

�2

�2
z + (1 � �µ)2 c̄2

L�2
e + �2

⌘, and (7.17)

MSEH = (�µc̄L)2 �2
e + �2

⌘, (7.18)

where MSEi ⌘ E
�
⇡t � E⇤

i,t�1⇡t

�2, for i 2 {L, H} .

Equation (7.17) depicts the accuracy of the less-informed group’s predictions. If Group L is able to fully

understand the expectations from Group H (i.e., without any observation errors �2
e = 0), the result is that

Group L obtains the minimum MSE (i.e, MSEL = �2
⌘). Otherwise, the finite �2

e reduces the less-informed

agents’ predictive accuracy (i.e., MSEL > �2
⌘).

More importantly, due to the information diffusion, Group H fails to obtain the most accurate forecast.

If there is no information diffusion process, then both groups form their forecasts independently, and Group

H obtains the minimum forecast error, MSEH = �2
⌘. However, if the process exists, with a finite �2

e , Group

H has higher forecast errors: MSEH = (�µc̄L)2 �2
e + �2

⌘ > �2
⌘ in equation (7.18). This result is called the

boomerang effect on the MSE.15

The results for Group H indicate only the two limit points of the variance observation errors (�2
e = 0

or �2
e ! 1) produce the most efficient outcome. Stated differently, Group L uses the expectations from

the highly informed group (i.e., when �2
e = 0, c̄L = 1), this implies Group L’s expectations become exactly

the same as those of Group H, resulting in both groups forecasting efficiently. However, if �2
e ! 1, then

c̄L = 0. In this case, Group L is unable to interpret Group H’s expectations and eventually discards them.
14For comparison, the MSE’s are calculated for situations in which both groups have the same (full) information set and

learn independently. Both groups’ MSE’s are at a minimum when MSEL = MSEH = �2
⌘
.

15See Proposition 4 in Granato et al. (2008, 360-361).
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Step 2: Analogues for Social Interaction, Expectations, Learning, Simultaneity, and Prediction
Error
• Group H’s MSE:

• Group L’s MSE:

• Due to information diffusion, Group H fails to obtain the most accurate forecast.
• Under RE and/or no info. diffusion, Group H’s MSE:
• With Information diffusion, Group H’s MSE:

This result is called the boomerang effect on MSE 
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Step 3: Unifying and evaluating the analogues
• The formal model demonstrates that Group L places a weight ̅𝑐(on the observed information

from Group H.
• Due to the information diffusion, Group H fails to obtain the most accurate forecast.

Therefore, the boomerang effect on MSE basically states that:

Group H’s MSE increases as the variance of interpretation errors  𝜎!" increases.
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Step 3: Unifying and evaluating the analogues

• Surveyed inflation expectations from the SRC at the University of Michigan
• The tests are directed at two things:

1. Existence of Asymmetric Information Diffusion
• The expectations of Group H influence the expectations of Group L

(The first test serves as a necessary condition for the second test.)

2. Existence of Boomerang Effect
• Examining whether larger observation errors made by Group L agents 𝜎)* result in

greater inaccuracy in inflation predictions by Group H agents MSEH.
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Step 3: Unifying and evaluating the analogues
1. Existence of Asymmetric Information Diffusion

The following questions relate to measuring inflation expectations:
1. During the next 12 months, do you think that prices in general will go up, or go down, or

stay where they are now?
2. By about what percent do you expect prices to go (up/down), on the average, during the next

12 months?
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Step 3: Unifying and evaluating the analogues
1. Existence of Asymmetric Information Diffusion
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innovation in a more educated group’s inflation expecta-
tions. The results show that the less-educated agents do
mimic agents with higher education level in a “positive”
manner in revising their inflation expectations. The result
supports the precondition of the boomerang effect.

4.3. Testing for the boomerang effect

To test for the evidence of a boomerang effect we
examine if a “positive” relation exists between the size of
observation errors of less-informed agents and the size of
forecast inaccuracy of more-informed agents. We measure
the size of observation error (et) by its variance ðs2e Þ, and the
size of themean square error of Group H’s forecasts (MSEH).

Using Eqs. (9) and (10), we construct the following
regression model:

E
#

Ljpt ¼ aLj þ bLjxt&1 þ cLj
!
E

#

H;t&1pt þ eLj;t&1

"
; (19)

where E#

Lj;t&1pt and E#

H;t&1pt represent the inflation forecasts
of less andmore-informed groups, respectively, j˛f1;2gand
xt is the information set for inflation forecasts for Group L,
which includes the current and lagged federal funds rate,
the current inflation rate, and oil prices.17 We construct the
series, s2

eLj
, using a rolling regression technique inwhich we

fix the regression window of (19) at 12 years and move it
forward every quarter.18

The observation error generated from Eq. (19) for the
less-informed groups is:

eLj;t&1 ¼
E#

Lj;t&1pt & aLj & bLjxt&1 & cLjE
#

H;t&1pt

cLj
:

This result follows that the variances of the observation
error ðs2

eLj ;t
Þ for the less-informed groups are:

s2
eLj ;t

¼

Ptþs

t
e2Lj;t

s& 1
;ct

where s represents the number of quarters in rolling
windows.

We adopt the same rolling regression technique to esti-
mate the mean square error for Group H:

MSEH;t ¼

Ptþs

t

!
pt & E#

H;t&1pt
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Fig. 1. Inflation forecasts and forecast errors for agents in three educational categories. Note: Group L1 represents agents with a high school diploma or some
college. Group L2 represents agents with less than or no high School diploma. Group H represents agents with a college degree or graduate degree. The data
source is the SRC at the University of Michigan.

Table 1
VAR pairwise Granger causality test: the direction of information diffusion
across Group H, Group L1 and Group L2.

Null hypothesis Chi-sq statistics
P-value

If forecasts of the higher educated group Granger-cause those of
the less educated group?

a. Group H does not Granger-cause Group L1 11.401 [0.122]
b. Group H does not Granger-cause Group L2 15.522a [0.030]
c. Group L1 does not Granger-cause Group L2 14.253a [0.047]

If forecasts of the less educated group Granger-cause those of the
higher educated group?

d. Group L1 does not Granger-cause Group H 3.897 [0.792]
e. Group L2 does not Granger-cause Group H 7.583 [0.371]
f. Group L2 does not Granger-cause Group L1 2.603 [0.919]

a Indicates statistical significance at 5%.

17 The data are from the FRED database provided by the Federal Reserve
Bank of St. Louis.
18 We alter the size of the rolling windows to check if the empirical
results are robust. We use 15-year and 10-year rolling regression
windows in our empirical analysis. However, results from using different
choices of regression windows do not show any substantive or statistical
difference, indicating the robustness of empirical findings presented in
the paper. Results based on alternative rolling regression windows are
available on request.
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innovation in a more educated group’s inflation expecta-
tions. The results show that the less-educated agents do
mimic agents with higher education level in a “positive”
manner in revising their inflation expectations. The result
supports the precondition of the boomerang effect.

4.3. Testing for the boomerang effect

To test for the evidence of a boomerang effect we
examine if a “positive” relation exists between the size of
observation errors of less-informed agents and the size of
forecast inaccuracy of more-informed agents. We measure
the size of observation error (et) by its variance ðs2e Þ, and the
size of themean square error of Group H’s forecasts (MSEH).

Using Eqs. (9) and (10), we construct the following
regression model:

E
#
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"
; (19)

where E#

Lj;t&1pt and E#

H;t&1pt represent the inflation forecasts
of less andmore-informed groups, respectively, j˛f1;2gand
xt is the information set for inflation forecasts for Group L,
which includes the current and lagged federal funds rate,
the current inflation rate, and oil prices.17 We construct the
series, s2

eLj
, using a rolling regression technique inwhich we

fix the regression window of (19) at 12 years and move it
forward every quarter.18

The observation error generated from Eq. (19) for the
less-informed groups is:

eLj;t&1 ¼
E#

Lj;t&1pt & aLj & bLjxt&1 & cLjE
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H;t&1pt

cLj
:

This result follows that the variances of the observation
error ðs2

eLj ;t
Þ for the less-informed groups are:

s2
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t
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where s represents the number of quarters in rolling
windows.

We adopt the same rolling regression technique to esti-
mate the mean square error for Group H:

MSEH;t ¼

Ptþs
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pt & E#

H;t&1pt
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Fig. 1. Inflation forecasts and forecast errors for agents in three educational categories. Note: Group L1 represents agents with a high school diploma or some
college. Group L2 represents agents with less than or no high School diploma. Group H represents agents with a college degree or graduate degree. The data
source is the SRC at the University of Michigan.

Table 1
VAR pairwise Granger causality test: the direction of information diffusion
across Group H, Group L1 and Group L2.

Null hypothesis Chi-sq statistics
P-value

If forecasts of the higher educated group Granger-cause those of
the less educated group?

a. Group H does not Granger-cause Group L1 11.401 [0.122]
b. Group H does not Granger-cause Group L2 15.522a [0.030]
c. Group L1 does not Granger-cause Group L2 14.253a [0.047]

If forecasts of the less educated group Granger-cause those of the
higher educated group?

d. Group L1 does not Granger-cause Group H 3.897 [0.792]
e. Group L2 does not Granger-cause Group H 7.583 [0.371]
f. Group L2 does not Granger-cause Group L1 2.603 [0.919]

a Indicates statistical significance at 5%.

17 The data are from the FRED database provided by the Federal Reserve
Bank of St. Louis.
18 We alter the size of the rolling windows to check if the empirical
results are robust. We use 15-year and 10-year rolling regression
windows in our empirical analysis. However, results from using different
choices of regression windows do not show any substantive or statistical
difference, indicating the robustness of empirical findings presented in
the paper. Results based on alternative rolling regression windows are
available on request.
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information diffusion: more-informed agent forecasts and expectations (e.g., with higher education levels)

influence less-informed agent forecasts and expectations (Granato and Krause 2000).

With these findings in mind, take equation (7.5) and partition the information set wt�1 into two parts:

wt�1 = (xt�1, zt�1), where xt�1 is “common” information, and zt�1 represents the “advanced” information:

⇡t = ↵ + �E⇤
t�1⇡t + �1xt�1 + �2zt�1 + ⌘t, (7.8)

where � = (�1, �2) . Following Granato et al. (2008) populations are separated into two groups of agents.

In the spirit of the classic two-step flow model (Lazarsfeld et al. 1944), the groups are separated by the

amount of information and interest they possess. Group L signifies the less-informed group. These agents

are assumed to be less current on political and economic events. Members of the second group, Group

H, are opinion leaders (e.g., issue publics) who are generally up-to-date on political and economic events.

Opinion leaders are key in any information diffusion process since they are recognized by the less-informed

group as having more and better information.

It follows that these two groups possess different information sets (xt�1,wt�1). Group H has the complete

information set of wt�1 = (xt�1, zt�1), while Group L only obtains the common information set xt�1. The

model also assumes that there is a continuum of agents located on the unit interval [0, 1] of which a

proportion of 1 � µ, where µ 2 [0, 1), are agents in Group H who are more informed when forecasting

inflation, and the rest of agents (the proportion of µ) are in Group L.

Agents are interactive. Group L observes Group H’s expectations to make its forecasts (but not vice

versa). However, Group L agents may interpret (or even misinterpret) Group H’s forecasts differently

or may not be able to obtain the exact information from the more-informed agents. The next step is to

introduce a distribution of observational errors, et�1, for Group L during the information diffusion process.8

This gives Group L’s forecasting model of inflation:

⇡t = aL + bLxt�1 + cLb⇡t�1 + vt, (7.9)
8Agents are unable to obtain the exact information from others (Kandel and Zilberfarb 1999). Granato et al. (2011)

assume that a distribution of observational errors et�1 is imposed to indicate the degree of misinterpretation of others’ actions.
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If forecasts of the higher educated group Granger-cause those of the less educated group?
Null hypothesis Chi-sq statistics [p-value]

a. Group H does not Granger-cause Group L1 11.401 [0.122]
b. Group H does not Granger-cause Group L2 15.522⇤⇤ [0.030]
c. Group L1 does not Granger-cause Group L2 14.253⇤⇤ [0.047]
If forecasts of the less educated group Granger-cause those of the higher educated group?

Null hypothesis Chi-sq statistics [p-value]
d. Group L1 does not Granger-cause Group H 3.897 [0.792]
e. Group L2 does not Granger-cause Group H 7.583 [0.371]
f. Group L2 does not Granger-cause Group L1 2.603 [0.919]
⇤⇤ indicates statistical significance at 5 percent.

Table 7.1: Granger Causality Test Results: Group H, Group L1, and Group L2

To test for the existence of the boomerang effect requires a determination of whether a “positive”

relation exists between the size of observation errors of less-informed agents and more-informed agents’

forecast inaccuracy size. The size of observation error et is based on its variance �2
e , while the forecast

(prediction) accuracy of the more-informed is the size of the mean square error of Group H’s forecasts

MSEH .

Using equations (7.9) and (7.10), we present the following regression model:

E⇤
Lj,t�1⇡t = aLj + bLjxt�1 + cLj

�
E⇤

H,t�1⇡t + eLj,t�1

�
, (7.19)

where E⇤
Lj,t�1⇡t and E⇤

H,t�1⇡t represent the inflation forecasts of less and more-informed groups, respectively,

j 2 {1, 2}, and xt is the information set for inflation forecasts for Group L, which includes the current and

lagged federal funds rate, the current inflation rate, and oil prices.18 The series �2
eLj

is constructed using a

rolling regression technique in which the regression window of (7.19) is set at 12 years and moved forward

every quarter.19

The observational error generated from equation (7.19) for the less-informed groups is:

eLj,t�1 =
E⇤

Lj,t�1⇡t � aLj � bLjxt�1 � cLjE⇤
H,t�1⇡t

cLj
.

18The data are from the FRED database provided by the Federal Reserve Bank of St. Louis.
1915-year and 10-year rolling regression windows are used in this empirical analysis. However, results from using different

choices of regression windows do not show any substantive or statistical difference.
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If forecasts of the higher educated group Granger-cause those of the less educated group?
Null hypothesis Chi-sq statistics [p-value]

a. Group H does not Granger-cause Group L1 11.401 [0.122]
b. Group H does not Granger-cause Group L2 15.522⇤⇤ [0.030]
c. Group L1 does not Granger-cause Group L2 14.253⇤⇤ [0.047]
If forecasts of the less educated group Granger-cause those of the higher educated group?

Null hypothesis Chi-sq statistics [p-value]
d. Group L1 does not Granger-cause Group H 3.897 [0.792]
e. Group L2 does not Granger-cause Group H 7.583 [0.371]
f. Group L2 does not Granger-cause Group L1 2.603 [0.919]
⇤⇤ indicates statistical significance at 5 percent.

Table 7.1: Granger Causality Test Results: Group H, Group L1, and Group L2

To test for the existence of the boomerang effect requires a determination of whether a “positive”

relation exists between the size of observation errors of less-informed agents and more-informed agents’

forecast inaccuracy size. The size of observation error et is based on its variance �2
e , while the forecast

(prediction) accuracy of the more-informed is the size of the mean square error of Group H’s forecasts

MSEH .

Using equations (7.9) and (7.10), we present the following regression model:

E⇤
Lj,t�1⇡t = aLj + bLjxt�1 + cLj

�
E⇤

H,t�1⇡t + eLj,t�1

�
, (7.19)

where E⇤
Lj,t�1⇡t and E⇤

H,t�1⇡t represent the inflation forecasts of less and more-informed groups, respectively,

j 2 {1, 2}, and xt is the information set for inflation forecasts for Group L, which includes the current and

lagged federal funds rate, the current inflation rate, and oil prices.18 The series �2
eLj

is constructed using a

rolling regression technique in which the regression window of (7.19) is set at 12 years and moved forward

every quarter.19

The observational error generated from equation (7.19) for the less-informed groups is:

eLj,t�1 =
E⇤

Lj,t�1⇡t � aLj � bLjxt�1 � cLjE⇤
H,t�1⇡t

cLj
.

18The data are from the FRED database provided by the Federal Reserve Bank of St. Louis.
1915-year and 10-year rolling regression windows are used in this empirical analysis. However, results from using different

choices of regression windows do not show any substantive or statistical difference.
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A. Data in levels
Augmented Dickey-Fuller test Elliott-Rothenberg-Stock Test

Variable DFµ
a DF⌧

b Optimal lags DF � GLSµ
c DF � GLS⌧

c Conclusion
MSEH �2.222 �0.661 3 �0.305 �1.690 I (1)
�2

e.L1 �0.826 �2.797 3 �0.531 �2.638 I (1)
�2

e.L2 �1.896 �3.327⇤ 6 �0.743 �3.327⇤⇤ I (1)
B. Data in first differences
Variable DFµ

a DF⌧
b Optimal lags DF � GLSµ

c DF � GLS⌧
c Conclusion

MSEH �4.536⇤⇤⇤ �4.966⇤⇤⇤ 2 �2.041⇤ �2.371⇤⇤ I (0)
�2

e.L1 �7.616⇤⇤⇤ �7.588⇤⇤⇤ 2 �2.957⇤⇤⇤ �2.973⇤ I (0)
�2

e.L2 �7.002⇤⇤⇤ �6.926⇤⇤⇤ 7 �3.367⇤⇤⇤ �3.440⇤⇤ I (0)
⇤⇤⇤,⇤⇤, and ⇤ indicate statistical significance at 1, 5, and 10 percent, respectively.
aTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
Fuller (1976) 1 and 5 percent critical values for a sample size of 41 equal �3.597 and �2.934,
respectively.
bTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
Fuller (1976) 1 and 5 percent critical values for a sample size of 41 equal �4.196 and �3.522,
respectively.
cTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
The critical values, not reported here, are calculated from the response surface estimates of Table
1, Cheung and Lai (1995).

Table 7.2: Unit Root Test Results for MSEH , �2
ẽ,L1, and �2

ẽ,L2

The variances of the observational error �2
eLj ,t

for the less-informed groups are:

�2
eLj ,t

=

Pt+s
t e2

Lj,t

s � 1
, 8t

where s represents the number of quarters (size of the window for the rolling regression).

Applying the same rolling regression technique to estimate the mean square error for Group H:

MSEH,t =

Pt+s
t

�
⇡t � E⇤

H,t�1⇡t

�2

s
, 8t.

A concern is the long-run (inter-)relation between MSEH and �2
eLj

and also whether a larger value of

�2
eLj

causes MSEH to increase. This result would support the boomerang effect hypothesis. To obtain

consistent estimates of the unknown parameters entering the system consisting of MSEH , �2
eL1

, and �2
eL2

,

we first characterize the stochastic properties of these underlying variables.

Table 7.2 presents the augmented Dickey-Fuller (1979) and Elliott-Rothenberg-Stock (1996) test results:

⟹

⟹

⟹
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and:

b⇡t�1 = E⇤
H,t�1⇡t + et�1, (7.10)

where et�1 s iid (0, �2
e) represents the observational errors which are uncorrelated with vt and wt�1, and

b⇡t�1 is the observed information that Group L obtains from Group H, E⇤
H,t�1⇡t (see equation (7.12)) with

observational error et�1 at time t � 1. Since Group L obtains the observed information after Group H

forms its expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is different since this group possesses the full information set to

forecast inflation:

⇡t = aH + b1Hxt�1 + b2Hzt�1 + vt. (7.11)

In this model, Group L and Group H do not directly obtain RE initially. Instead, Group L and Group H

recursively forecast following the process of equations (7.9) and (7.11), respectively, and have data on the

political-economic system for periods ti = Ti, ..., t � 1, where i 2 {L, H}. At time t � 1, the information

set for the less-informed group, Group L, is {⇡i, xi, b⇡i}t�1
i=TL

, but that for Group H is {⇡i, wi}t�1
i=TH

.

With analogues for expectations and social interaction established, the analogue for learning is derived

(see Evans and Honkapohja 2001; Granato et al. 2008).9 Based on the adaptive learning method, agents

attempt to learn the stochastic process by updating their forecasts (expectations) as new information

becomes available. Both groups use equation (7.12) for their perceived law of motion (PLM) when they

forecast the variable of interest (inflation rate):

E⇤
i,t�1⇡t = '0

iqi,t�1, (7.12)

where i 2 {L, H}, q0L,t�1 ⌘ (1, xt�1, b⇡t�1), q0H,t�1 ⌘ (1, xt�1, zt�1), '0
L ⌘ (aL, bL, cL) and '0

H ⌘ (aH , b1H , b2H).

The inflation expectations E⇤
t�1⇡t in the society can be calculated as the weighted average of the expecta-

tions from both groups:

E⇤
t�1⇡t = µE⇤

L,t�1⇡t + (1 � µ) E⇤
H,t�1⇡t. (7.13)

9Evans and Honkapohja (2001) argue the assumption of RE is rather strong. They suggest the assumption can be relaxed
by allowing agents to “learn” or update their conditional forecasts over time to obtain RE in the long run. This is called the
adaptive learning approach (see Chapter 6, Section 6.6.2).
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⇤⇤⇤,⇤⇤, and ⇤ indicate statistical significance at 1, 5, and 10 percent, respectively.
aTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
Fuller (1976) 1 and 5 percent critical values for a sample size of 41 equal �3.597 and �2.934,
respectively.
bTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
Fuller (1976) 1 and 5 percent critical values for a sample size of 41 equal �4.196 and �3.522,
respectively.
cTest allows for a constant; one-sided test of the null hypothesis that the variable is non-stationary.
The critical values, not reported here, are calculated from the response surface estimates of Table
1, Cheung and Lai (1995).

Table 7.2: Unit Root Test Results for MSEH , �2
ẽ,L1, and �2
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The variances of the observational error �2
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for the less-informed groups are:
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where s represents the number of quarters (size of the window for the rolling regression).

Applying the same rolling regression technique to estimate the mean square error for Group H:

MSEH,t =

Pt+s
t

�
⇡t � E⇤

H,t�1⇡t

�2

s
, 8t.

A concern is the long-run (inter-)relation between MSEH and �2
eLj

and also whether a larger value of

�2
eLj

causes MSEH to increase. This result would support the boomerang effect hypothesis. To obtain

consistent estimates of the unknown parameters entering the system consisting of MSEH , �2
eL1

, and �2
eL2

,

we first characterize the stochastic properties of these underlying variables.

Table 7.2 presents the augmented Dickey-Fuller (1979) and Elliott-Rothenberg-Stock (1996) test results:

σ#" à MSEH ?

We test the long run relationship between σ+* and MSEH 
1. Unit-root tests – the integration properties of σ+* and MSEH 
2. Johansen cointegration test and Granger causality tests in VECM
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5. Conclusion

In this paper, we use an EITM framework to explore
forecasting behavior within an information diffusion
process. The information diffusion process is in the same
spirit of the two-step flow of communication: a less-
informed group interacts with a more-informed group. We
extend the applied statistical work of Granato and Krause
(2000) and incorporate the attributes of the EITM frame-
work to lead to new equilibrium predictions about
behavior. The attributes of the EITM approach allows for an
investigation of the boomerang effect, which we define as a

situation in which the inaccurate forecasts of a less-
informed group confound a more-informed group’s
forecasts.

We use the Survey Research Center (SRC) inflation
expectations data to test the existence of asymmetric
information diffusion and the boomerang effect. The
quarterly survey data, divided along different educational
groups, covers 1978 through 2000. To test for the existence
of the boomerang effect, we use a cointegration test to
estimate the long run relation between the variance
of observational errors from the less educated group and
the mean square error of the more educated group’s

Table 3
Johansen cointegration tests and Granger causality tests in VECM: the (inter-)relation among MSEH, s2eL1 , and s2eL2 .

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH ; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

blmax Trace blmax Trace blmax Trace blmax Trace

A: Rank test and cointegrating relation
No rank 12.82**

[11.44]
15.22**
[12.53]

8.00
[11.44]

12.20*
[12.53]

48.60***
[22.00]

87.52***
[34.91]

6.52
[11.44]

8.80
[12.53]

At most 1 rank 2.40
[3.84]

2.40
[3.84]

4.20
[3.84]

4.20
[3.84]

32.65***
[15.67]

38.92***
[19.96]

2.28
[3.84]

2.28
[3.84]

At most 2 ranks – – – – 6.27 9.24] 6.27 9.24] – –

Conclusion 1 cointegrating
relation

1 cointegrating
relation

2 cointegrating relations None

Estimated cointegration vector ðMSEH; s2eL1 ¼
ð1;#29:58ÞÞ

ððMSEH ; s2eL2 Þ ¼
ð1;#21:54ÞÞ

ðMSEH ; s2eL1 ; s
2
eL2 Þ ¼

ð1;#20:52;#0:79Þ)
None

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value

B: The direction of causality in VECM
s2eL1 does not cause MSEH 14.36*** [0.006] – 21.04*** [0.007] –

MSEH does not cause s2eL1 3.82 [0.430] – 5.68 [0.682] –

s2eL2 does not cause MSEH – 19.43*** [0.000] 30.87*** [0.000] –

MSEH does not cause s2eL2 – 4.72 [0.194] 7.15 [0.521] –

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively. We use the AIC criterion to choose the optimal number of lags to be included in each
empirical model. Five percent critical values, from Osterwald-Lenum (1992), for rank tests are in parentheses.

a Test allows for a constant but no trend in the data space and 4 lags are included in the system.
b Test allows for a constant but no trend in the data space and 3 lags are included in the system.
c Test allows for a constant but no trend in the cointegration space and 8 lags are included in the system.
d Test allows for a constant but no trend in the data space and 4 lags are included in the system.

Table 2
Unit root test results: the integration properties of MSEH, s2eL1 , and s2eL2 .

Variable Augmented Dickey–Fuller test Elliott–Rothenberg–Stock test Conclusion

DFma DFsb Optimal
lag

DF# GLSmc DF# GLSsc

A. Data in levels
MSEH #2.222 #0.661 3 #0.305 #1.690 I(1)
s2eL1 #0.826 #2.797 3 #0.531 #2.638 I(1)
s2eL2 #1.896 #3.327* 6 #0.743 #3.327** I(1)

B. Data in first differences
MSEH #4.536*** #4.966*** 2 #2.041* #2.371** I(0)
s2eL1 #7.616*** #7.588*** 2 #2.957*** #2.973* I(0)
s2eL2 #7.002*** #6.926*** 7 #3.367*** #3.440** I(0)

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively.
a Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #3.597 and #2.934, respectively.
b Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #4.196 and #3.522, respectively.
c Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. The critical values, not reported here, are calculated

from the response surface estimates of Table 1, Cheung and Lai (1995).
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5. Conclusion

In this paper, we use an EITM framework to explore
forecasting behavior within an information diffusion
process. The information diffusion process is in the same
spirit of the two-step flow of communication: a less-
informed group interacts with a more-informed group. We
extend the applied statistical work of Granato and Krause
(2000) and incorporate the attributes of the EITM frame-
work to lead to new equilibrium predictions about
behavior. The attributes of the EITM approach allows for an
investigation of the boomerang effect, which we define as a

situation in which the inaccurate forecasts of a less-
informed group confound a more-informed group’s
forecasts.

We use the Survey Research Center (SRC) inflation
expectations data to test the existence of asymmetric
information diffusion and the boomerang effect. The
quarterly survey data, divided along different educational
groups, covers 1978 through 2000. To test for the existence
of the boomerang effect, we use a cointegration test to
estimate the long run relation between the variance
of observational errors from the less educated group and
the mean square error of the more educated group’s

Table 3
Johansen cointegration tests and Granger causality tests in VECM: the (inter-)relation among MSEH, s2eL1 , and s2eL2 .

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH ; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

blmax Trace blmax Trace blmax Trace blmax Trace

A: Rank test and cointegrating relation
No rank 12.82**

[11.44]
15.22**
[12.53]

8.00
[11.44]

12.20*
[12.53]

48.60***
[22.00]

87.52***
[34.91]

6.52
[11.44]

8.80
[12.53]

At most 1 rank 2.40
[3.84]

2.40
[3.84]

4.20
[3.84]

4.20
[3.84]

32.65***
[15.67]

38.92***
[19.96]

2.28
[3.84]

2.28
[3.84]

At most 2 ranks – – – – 6.27 9.24] 6.27 9.24] – –

Conclusion 1 cointegrating
relation

1 cointegrating
relation

2 cointegrating relations None

Estimated cointegration vector ðMSEH; s2eL1 ¼
ð1;#29:58ÞÞ

ððMSEH ; s2eL2 Þ ¼
ð1;#21:54ÞÞ

ðMSEH ; s2eL1 ; s
2
eL2 Þ ¼

ð1;#20:52;#0:79Þ)
None

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value

B: The direction of causality in VECM
s2eL1 does not cause MSEH 14.36*** [0.006] – 21.04*** [0.007] –

MSEH does not cause s2eL1 3.82 [0.430] – 5.68 [0.682] –

s2eL2 does not cause MSEH – 19.43*** [0.000] 30.87*** [0.000] –

MSEH does not cause s2eL2 – 4.72 [0.194] 7.15 [0.521] –

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively. We use the AIC criterion to choose the optimal number of lags to be included in each
empirical model. Five percent critical values, from Osterwald-Lenum (1992), for rank tests are in parentheses.

a Test allows for a constant but no trend in the data space and 4 lags are included in the system.
b Test allows for a constant but no trend in the data space and 3 lags are included in the system.
c Test allows for a constant but no trend in the cointegration space and 8 lags are included in the system.
d Test allows for a constant but no trend in the data space and 4 lags are included in the system.

Table 2
Unit root test results: the integration properties of MSEH, s2eL1 , and s2eL2 .

Variable Augmented Dickey–Fuller test Elliott–Rothenberg–Stock test Conclusion

DFma DFsb Optimal
lag

DF# GLSmc DF# GLSsc

A. Data in levels
MSEH #2.222 #0.661 3 #0.305 #1.690 I(1)
s2eL1 #0.826 #2.797 3 #0.531 #2.638 I(1)
s2eL2 #1.896 #3.327* 6 #0.743 #3.327** I(1)

B. Data in first differences
MSEH #4.536*** #4.966*** 2 #2.041* #2.371** I(0)
s2eL1 #7.616*** #7.588*** 2 #2.957*** #2.973* I(0)
s2eL2 #7.002*** #6.926*** 7 #3.367*** #3.440** I(0)

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively.
a Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #3.597 and #2.934, respectively.
b Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #4.196 and #3.522, respectively.
c Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. The critical values, not reported here, are calculated

from the response surface estimates of Table 1, Cheung and Lai (1995).
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5. Conclusion

In this paper, we use an EITM framework to explore
forecasting behavior within an information diffusion
process. The information diffusion process is in the same
spirit of the two-step flow of communication: a less-
informed group interacts with a more-informed group. We
extend the applied statistical work of Granato and Krause
(2000) and incorporate the attributes of the EITM frame-
work to lead to new equilibrium predictions about
behavior. The attributes of the EITM approach allows for an
investigation of the boomerang effect, which we define as a

situation in which the inaccurate forecasts of a less-
informed group confound a more-informed group’s
forecasts.

We use the Survey Research Center (SRC) inflation
expectations data to test the existence of asymmetric
information diffusion and the boomerang effect. The
quarterly survey data, divided along different educational
groups, covers 1978 through 2000. To test for the existence
of the boomerang effect, we use a cointegration test to
estimate the long run relation between the variance
of observational errors from the less educated group and
the mean square error of the more educated group’s

Table 3
Johansen cointegration tests and Granger causality tests in VECM: the (inter-)relation among MSEH, s2eL1 , and s2eL2 .

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH ; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

blmax Trace blmax Trace blmax Trace blmax Trace

A: Rank test and cointegrating relation
No rank 12.82**

[11.44]
15.22**
[12.53]

8.00
[11.44]

12.20*
[12.53]

48.60***
[22.00]

87.52***
[34.91]

6.52
[11.44]

8.80
[12.53]

At most 1 rank 2.40
[3.84]

2.40
[3.84]

4.20
[3.84]

4.20
[3.84]

32.65***
[15.67]

38.92***
[19.96]

2.28
[3.84]

2.28
[3.84]

At most 2 ranks – – – – 6.27 9.24] 6.27 9.24] – –

Conclusion 1 cointegrating
relation

1 cointegrating
relation

2 cointegrating relations None

Estimated cointegration vector ðMSEH; s2eL1 ¼
ð1;#29:58ÞÞ

ððMSEH ; s2eL2 Þ ¼
ð1;#21:54ÞÞ

ðMSEH ; s2eL1 ; s
2
eL2 Þ ¼

ð1;#20:52;#0:79Þ)
None

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value

B: The direction of causality in VECM
s2eL1 does not cause MSEH 14.36*** [0.006] – 21.04*** [0.007] –

MSEH does not cause s2eL1 3.82 [0.430] – 5.68 [0.682] –

s2eL2 does not cause MSEH – 19.43*** [0.000] 30.87*** [0.000] –

MSEH does not cause s2eL2 – 4.72 [0.194] 7.15 [0.521] –

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively. We use the AIC criterion to choose the optimal number of lags to be included in each
empirical model. Five percent critical values, from Osterwald-Lenum (1992), for rank tests are in parentheses.

a Test allows for a constant but no trend in the data space and 4 lags are included in the system.
b Test allows for a constant but no trend in the data space and 3 lags are included in the system.
c Test allows for a constant but no trend in the cointegration space and 8 lags are included in the system.
d Test allows for a constant but no trend in the data space and 4 lags are included in the system.

Table 2
Unit root test results: the integration properties of MSEH, s2eL1 , and s2eL2 .

Variable Augmented Dickey–Fuller test Elliott–Rothenberg–Stock test Conclusion

DFma DFsb Optimal
lag

DF# GLSmc DF# GLSsc

A. Data in levels
MSEH #2.222 #0.661 3 #0.305 #1.690 I(1)
s2eL1 #0.826 #2.797 3 #0.531 #2.638 I(1)
s2eL2 #1.896 #3.327* 6 #0.743 #3.327** I(1)

B. Data in first differences
MSEH #4.536*** #4.966*** 2 #2.041* #2.371** I(0)
s2eL1 #7.616*** #7.588*** 2 #2.957*** #2.973* I(0)
s2eL2 #7.002*** #6.926*** 7 #3.367*** #3.440** I(0)

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively.
a Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #3.597 and #2.934, respectively.
b Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #4.196 and #3.522, respectively.
c Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. The critical values, not reported here, are calculated

from the response surface estimates of Table 1, Cheung and Lai (1995).
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5. Conclusion

In this paper, we use an EITM framework to explore
forecasting behavior within an information diffusion
process. The information diffusion process is in the same
spirit of the two-step flow of communication: a less-
informed group interacts with a more-informed group. We
extend the applied statistical work of Granato and Krause
(2000) and incorporate the attributes of the EITM frame-
work to lead to new equilibrium predictions about
behavior. The attributes of the EITM approach allows for an
investigation of the boomerang effect, which we define as a

situation in which the inaccurate forecasts of a less-
informed group confound a more-informed group’s
forecasts.

We use the Survey Research Center (SRC) inflation
expectations data to test the existence of asymmetric
information diffusion and the boomerang effect. The
quarterly survey data, divided along different educational
groups, covers 1978 through 2000. To test for the existence
of the boomerang effect, we use a cointegration test to
estimate the long run relation between the variance
of observational errors from the less educated group and
the mean square error of the more educated group’s

Table 3
Johansen cointegration tests and Granger causality tests in VECM: the (inter-)relation among MSEH, s2eL1 , and s2eL2 .

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH ; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

blmax Trace blmax Trace blmax Trace blmax Trace

A: Rank test and cointegrating relation
No rank 12.82**

[11.44]
15.22**
[12.53]

8.00
[11.44]

12.20*
[12.53]

48.60***
[22.00]

87.52***
[34.91]

6.52
[11.44]

8.80
[12.53]

At most 1 rank 2.40
[3.84]

2.40
[3.84]

4.20
[3.84]

4.20
[3.84]

32.65***
[15.67]

38.92***
[19.96]

2.28
[3.84]

2.28
[3.84]

At most 2 ranks – – – – 6.27 9.24] 6.27 9.24] – –

Conclusion 1 cointegrating
relation

1 cointegrating
relation

2 cointegrating relations None

Estimated cointegration vector ðMSEH; s2eL1 ¼
ð1;#29:58ÞÞ

ððMSEH ; s2eL2 Þ ¼
ð1;#21:54ÞÞ

ðMSEH ; s2eL1 ; s
2
eL2 Þ ¼

ð1;#20:52;#0:79Þ)
None

Null hypothesis Variables in the system

MSEH; s2eL1
a (1) MSEH; s2eL2

b (2) MSEH; s2eL1 ; s
2
eL2

c (3) s2eL1 ; s
2
eL2

d (4)

Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value Chi-sq statistics p-value

B: The direction of causality in VECM
s2eL1 does not cause MSEH 14.36*** [0.006] – 21.04*** [0.007] –

MSEH does not cause s2eL1 3.82 [0.430] – 5.68 [0.682] –

s2eL2 does not cause MSEH – 19.43*** [0.000] 30.87*** [0.000] –

MSEH does not cause s2eL2 – 4.72 [0.194] 7.15 [0.521] –

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively. We use the AIC criterion to choose the optimal number of lags to be included in each
empirical model. Five percent critical values, from Osterwald-Lenum (1992), for rank tests are in parentheses.

a Test allows for a constant but no trend in the data space and 4 lags are included in the system.
b Test allows for a constant but no trend in the data space and 3 lags are included in the system.
c Test allows for a constant but no trend in the cointegration space and 8 lags are included in the system.
d Test allows for a constant but no trend in the data space and 4 lags are included in the system.

Table 2
Unit root test results: the integration properties of MSEH, s2eL1 , and s2eL2 .

Variable Augmented Dickey–Fuller test Elliott–Rothenberg–Stock test Conclusion

DFma DFsb Optimal
lag

DF# GLSmc DF# GLSsc

A. Data in levels
MSEH #2.222 #0.661 3 #0.305 #1.690 I(1)
s2eL1 #0.826 #2.797 3 #0.531 #2.638 I(1)
s2eL2 #1.896 #3.327* 6 #0.743 #3.327** I(1)

B. Data in first differences
MSEH #4.536*** #4.966*** 2 #2.041* #2.371** I(0)
s2eL1 #7.616*** #7.588*** 2 #2.957*** #2.973* I(0)
s2eL2 #7.002*** #6.926*** 7 #3.367*** #3.440** I(0)

***, **, and * indicate statistical significance at 1, 5 and 10%, respectively.
a Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #3.597 and #2.934, respectively.
b Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. Fuller (1976) 1 and 5% critical values for a sample size

of 41 equal #4.196 and #3.522, respectively.
c Test allows for a constant; one-sided test of the null hypothesis that the variable is nonstationary. The critical values, not reported here, are calculated

from the response surface estimates of Table 1, Cheung and Lai (1995).
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Step 3: Unifying and evaluating the analogues
The Unit-root, Johansen and Granger Causality tests indicate a boomerang effect exists.

The long run “cointegrated” relation between the variance of observational errors σ!" from the
less educated group (Group L) influence the mean square error of the more educated group’s
(Group H’s) expectations (MSEH ).

Information Diffusion & Inflation Expectations (Chapter 7)
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