TIEEP

TEXAS INDUSTRIAL ENERGY EFFICIENCY PROGRAM

Water Forum

The Nexus of Water and Energy Conservation

Tools and Techniques for Assessing Sustainability in Engineering Design

Dr. Andrew Shaw, Black & Veatch

Black & Veatch Today

- 12,000+ professionals in 120+ global offices
- 250+ in Houston
- 8th largest employee-owned ESOP in the United States
- Projects in 100+ countries on six continents
- \$4.3 billion in 2022 revenue

A pioneering spirit as a partner of choice for disruptive, first of a kind solutions.

Our Purpose: Building a World of Difference

Our Vision: THE Leader in Sustainable Infrastructure

Sustainable Infrastructure...?

Sustainable Infrastructure... Supports the Economy

Sustainable Infrastructure... Enhances Quality of Life

Sustainable Infrastructure... Considers Environmental Impacts

Sustainable Infrastructure... Has a Local Focus

Sustainable Infrastructure... Takes a Long-Term Perspective

Sustainable Infrastructure... ?????

Tools & Techniques

- 1. Envision
- 2. Life Cycle Assessment (LCA)

Introducing Envision

Envision is a blueprint for fundamental change in infrastructure development.

- Enables a thorough examination of the sustainability and resiliency of infrastructure projects
- Provides practical guidance on how to improve performance
- Drives better project management

ASCE's Report Card for America's Infrastructure

America's Infrastructure Today

The Future of Infrastructure

EnvisionTM

- Institute for Sustainable Infrastructure (ISI)
- Like LEED for non-building, Infrastructure
- Launched in 2013

Envision is Backed by Major National Member Organizations

The Institute for Sustainable Infrastructure is a not-for-profit education and research organization founded by the American Public Works Association, the American Council of Engineering Companies and the American Society of Civil Engineers.

5 Categories of Sustainability Indicators

64 Credits (Sustainability & Resilience Indicators)

Leadership

12 Credits

WELLBEING

QL1.1 Improve Community Quality of Life

QL1.2 Enhance Public Health & Safety

QL1.3 Improve Construction Safety

QL1.4 Minimize Noise & Vibration

QL1.5 Minimize Light Pollution

QL1.6 Minimize Construction Impacts

MOBILITY

QL2.1 Improve Community Mobility & Access

QL2.2 Encourage Sustainable Transportation

QL2.3 Improve Access & Wayfinding

COMMUNITY

QL3.1 Advance Equity & Social Justice

QL3.2 Preserve Historic & Cultural Resources

QL3.3 Enhance Views & Local Character

QL3.4 Enhance Public Space & Amenities

QLO.0 Innovate or Exceed Credit Requirements

COLLABORATION

LD1.1 Provide Effective Leadership & Commitment

LD1.2 Foster Collaboration & Teamwork

LD1.3 Provide for Stakeholder Involvement

LD1.4 Pursue Byproduct Synergies

PLANNING

LD2.1 Establish a Sustainability Management Plan

LD2.2 Plan for Sustainable Communities

LD2.3 Plan for Long-Term Monitoring & Maintenance

LD2.4 Plan for End-of-Life

ECONOMY

LD3.1 Stimulate Economic Prosperity & Development

LD3.2 Develop Local Skills & Capabilities

LD3.3 Conduct a Life-Cycle Economic Evaluation

LD0.0 Innovate or Exceed Credit Requirements

MATERIALS

RA1.1 Support Sustainable Procurement Practices

RA1.2 Use Recycled Materials

RA1.3 Reduce Operational Waste

RA1.4 Reduce Construction Waste

RA1.5 Balance Earthwork On Site

ENERGY

RA2.1 Reduce Operational Energy Consumption

RA2.2 Reduce Construction Energy Consumption

RA2.3 Use Renewable Energy

RA2.4 Commission & Monitor Energy Systems

WATER

RA3.1 Preserve Water Resources

RA3.2 Reduce Operational Water Consumption

RA3.3 Reduce Construction Water Consumption

RA3.4 Monitor Water Systems

RAO.O Innovate or Exceed Credit Requirements

SITING

NW1.1 Preserve Sites of High Ecological Value

NW1.2 Provide Wetland & Surface Water Buffers

NW1.3 Preserve Prime Farmland

NW1.4 Preserve Undeveloped Land

CONSERVATION

NW2.1 Reclaim Brownfields

NW2.2 Manage Stormwater

NW2.3 Reduce Pesticide & Fertilizer Impacts

NW2.4 Protect Surface & Groundwater Quality

ECOLOGY

NW3.1 Enhance Functional Habitats

NW3.2 Enhance Wetland & Surface Water Functions

NW3.3 Maintain Floodplain Functions

NW3.4 Control Invasive Species

NW3.5 Protect Soil Health

NW0.0 Innovate or Exceed Credit Requirements

EMISSIONS

CR1.1 Reduce Net Embodied Carbon

CR1.2 Reduce Greenhouse Gas Emissions

CR1.3 Reduce Air Pollutant Emissions

RESILIENCE

CR2.1 Avoid Unsuitable Development

CR2.2 Assess Climate Change Vulnerability

CR2.3 Evaluate Risk & Resilience

CR2.4 Establish Resilience Goals and Strategies

CR2.5 Maximize Resilience

CR2.6 Improve Infrastructure Integration

CRO.O Innovate or Exceed Credit Requirements

Envision Credit Detail

QUALITY OF LIFE: WELLBEING

QL1.1 Improve Community Quality of Life

26

INTENT

Improve the net quality of life of all communities affected by the project and mitigate negative impacts to communities.

METRIC

Measures taken to assess community needs and improve quality of life while minimizing negative impacts.

LEVELS OF ACHIEVEMENT

IMPROVED	ENHANCED	SUPERIOR	CONSERVING	RESTORATIVE
A + B	A + B + C + D	A + B + C + D + E	A + B + C + D + E + F	A + B + C + D + E + F + G
(2) Community Considerations	(5) Community Linkages	(10) Broad Community Alignment	(20) Holistic Assessment & Collaboration	(26) Protecting The Future

- (A) The project team identifies and takes into account community needs, goals, and issues. For example, the project team has located and reviewed the most recent community planning information and assessed relevant community needs, goals, and/or issues.
- (B) The project meets or supports community needs and/or goals.
 - (C) The project assesses the social impacts it will have on the host and affected communities' quality of life.
 - (D) The affected communities are meaningfully engaged in identifying how the project supports community needs and/or goals.
 - (E) Based on the social assessment, potential negative impacts on the host or nearby affected communities are mitigated following a hierarchy that prioritizes avoidance, minimization, restoration, and offsetting.
 - (F) Community satisfaction is demonstrated by feedback from the stakeholder engagement process verifying actions taken in criteria A, B, C, and D.
 - (G) The project proactively addresses trends in changing social, economic, and/or environmental conditions within the community in order to ensure a high quality of life over the long term.

Envision Use

165+ verified projects, totaling ~\$130 billion

totaling ~\$120 billion

185+ projects in registration,

9,250+ credentialed professionals

650+ organizational members

*as of March 31, 2024

What is LCA?

Life Cycle Assessment Principle

- Track Mass Flows using a Broad "Holistic" Approach
- Track Energy Use and Tie this to Materials (e.g. Fossil Fuels)
- Assess Potential Impact of Constituent Mass Loads and Energy Under Different Categories
- The Ultimate Mass Balance?!

LCA Inputs/Outputs Schematic

Life Cycle Assessment (LCA) – ISO 14000 Series

LCA Software

sphera

SimaPro

https://simapro.com/

GaBi

https://gabi.sphera.com/america/index/

OpenLCA

http://www.openlca.org/

Multiple Databases:

ecoinvent v.2, US LCI, ELCD, US Input Output, EU and Danish Input Output, Dutch Input Output, LCA Food, Industry data v.2.

Multiple Assessment Methods:

ReCiPe, Eco-indicator 99, USEtox, IPCC 2007, EPD, Impact 2002+, CML-IA, Traci 2, BEES, Ecological Footprint, EDIP 2003, Ecological scarcity 2006, EPS 2000, Greenhouse Gas Protocol and others.

LCA Example

Case Study: Blue Plains AWTP Bioaugmentation or Not?

Inventory – System Components

Inventory - Data

	BioAugmentation	No BioAugmentation
Methanol Use (gal/year)	3.57×10^7	4.71×10^7
Aeration Power		
Nit/Denit Air (kWh/yr)	2,590,909	3,465,909
CBOD Removal Air (kWh/yr)	39,409,091	33,272,727
Biological Treatment		
Emissions to Air		
N_2O (kg/yr)	0.117×10^6	0.117×10^6
Methanol (lb/yr)	2000	2000
CO_2 (lb/yr)	8.11×10^4	1.06×10^5
Effluent Emissions		
Nitrogen (kg/m³)	4.3×10^{-3}	4.3×10^{-3}
Phosphorus (kg/m³)	0.8×10^{-4}	0.8 x 10 ⁻⁴
N_2O (kg/m ³)	1.4 x 10 ⁻⁵	1.4 x 10 ⁻⁵
Nickel (kg/m ³)	5.03 x 10 ⁻⁶	5.03 x 10 ⁻⁶
Copper (kg/m ³)	3.9 x 10 ⁻⁶	3.9 x 10 ⁻⁶
Lead (kg/m ³)	2.6 x 10 ⁻⁶	2.6 x 10 ⁻⁶
Molybdenum (kg/m ³)	7.18 x 10 ⁻⁶	7.18 x 10 ⁻⁶
Cadmium (kg/m³)	2.5 x 10 ⁻⁷	2.5 x 10 ⁻⁷
Chloroform (kg/m ³)	3.52 x 10 ⁻⁶	3.52×10^{-6}
Chloro dibromo methane (kg/m³)	1.35×10^{-6}	1.35×10^{-6}
Bromo dichloro methane (kg/m³)	3.25 x 10 ⁻⁶	3.25 x 10 ⁻⁶

Inventory – Data (Electricity Mix)

Coal	53.5%
Nuclear	34.7%
Natural Gas	6.9%
Hydropower	0.9%
Oil	0.3%
Wind Power	0.5%
Cogeneration- Wood	2%
Cogeneration- Biogas	1.2%

^{*}Electricity mix per kilowatt-hour of power from Pepco website: http://www.pepco.com/_res/documents/pepcomdfuelmix6_09.pdf

Impact Assessment Method

Impact Assessment - Damage

Potential Impact of Various Categories							
Damage Category	Unit	Bioaugmentation	No Bioaugmentation	Difference*	Percentage* Difference		
Carcinogens	kg C ₂ H ₃ Cl eq	1.18×10^6	1.16×10^6	0.02×10^{6}	1.7%		
Non- Carcinogens	kg C ₂ H ₃ Cl eq	7.94×10^{5}	7.48×10^5	0.46×10^{5}	5.8%		
Ozone Layer Depletion	kg CFC-11 eq	4.05	4.77	-0.72	17.8%		
Photochemical Oxidation	kg C ₂ H ₄ eq	8540	9980	-1440	16.9%		
Aquatic Ecotoxicity	kg TEG eq- water	5.03×10 ¹⁰	5.02×10 ¹⁰	0.01×10^{10}	0.2%		
Terrestrial Ecotoxicity	kg TEG eq-soil	6.61×10 ⁸	6.43×10 ⁸	0.18×10 ⁸	2.7%		
Terrestrial acid/nutri	kg SO ₂ eq	6.26×10 ⁵	6.01×10 ⁵	0.25×10 ⁵	4.0%		
Eutrophication- P	kg P	3.73×10^4	3.74×10^4	-0.01×10^4	0.3%		
Eutrophication- N	kg N	2.02×10^{6}	2.02×10^6	0	0		
Global Warming Potential	kg CO ₂ eq	5.95×10^7	5.95×10 ⁷	0	0		
Water Use	m ³ H ₂ O	2.06×10 ⁷	2.07×10 ⁷	-0.01×10 ⁷	0.5%		
Non- Renewable Energy	MJ Primary	1.23×10 ⁹	1.36×10 ⁹	-0.13×10 ⁹	10.5%		
Water Consumption	m³ H ₂ O	3.24×10^{5}	2.83×10 ⁵	0.41×10^{5}	12.6%		

^{*}Values in red indicate Bioaugmentation alternative is favorable

^{*}Values in green indicate No Bioaugmentaion alternative is favorable

^{*}Percentage differences greater than 10% in **BOLD**.

Monte-Carlo Analysis - GWP

Comparative Monte Carlo Analysis - GWP

Comparative Monte Carlo Analysis – All Categories

Example LCA Flow Diagram

Summary

- We have aging infrastructure
- Opportunity to build back better, and more sustainably
- Envision rating tool useful for assessing projects
- LCA useful for understanding a broad range of environmental Impacts

Shameless Plug...

Water Management in Petroleum Industries | SpringerLink

Somnath Basu Andrew R. Shaw Mudumbai Venkatesh *Editors*

Water Management in Petroleum Industries

Contact Us: Andrew Shaw PhD, PE, BCEE, ENV SP ShawAR@bv.com | +1 913 980 6318

Learn more at bv.com and on social media

