Meng Li

W105, Engineering Bldg 2, 4726 Calhoun Rd, Houston TX 77204 Email: mli23@uh.edu Telephone: 832-455-4654 Linkedin: <u>https://www.linkedin.com/in/meng-li-a37937185</u> Github: <u>https://github.com/Sunnyfred/Machine-Learning-Models</u> Google Scholar: <u>https://scholar.google.com/citations?user=X-CZh2wAAAAJ&hl=en</u>

Background & Research Topics

- Computational Fluid Dynamics DNS, LES, and RANS simulations of turbulent flows and multi-phase flows, finite volume and finite difference schemes for discretization, projection method and Helmholtz decomposition algorithm for CFD solver
- Turbulent Flows with Complex Boundaries wave-turbulence interactions and boundary layer flow over undulatory boundaries
 High Performance Computing High-performance large-scale parallel
- computing techniques for CFD solvers
 Machine Learning Familiar with regression, classification and clustering models (Linear Regression, Logistic Regression, Decision Tree, Random Forest, SVM, Neural Networks, etc.)

Professional Experience

 Postdoctoral Research Fellow in Civil and Environmental Engineering 2021-Present University of Houston, Houston, US Advisor: Prof. Mostafa Momen

Education & Qualifications

•	Ph. D. in Mechanical Engineering	2016-2020
	University of Houston, Houston, US	CGPA:3.89/4.00
	Dissertation Title: "Wave-Resolving Numerical Simulation of Langmuir Circulations"	
	Advisor: Prof. Di Yang	
•	M. S. in Engineering Thermophysics	2013-2016
	Beihang University (BUAA), Beijing, China	CGPA:4.00/4.00
	Thesis Title: "Investigation of Wall Modeled Large Eddy Simulation of Turbulent Flow in High	
	Reynolds Number"	
•	B. E. in Aeronautical Engineering	2009-2013
	Zhengzhou University of Aeronautics, Zhengzhou, China	CGPA:3.75/4.00

Research Experiences

University of Houston

Postdoctoral Research Fellow 2021-Present

<u>High-performance Computational Fluid Dynamic Simulations for Urban and Coastal</u> <u>Applications</u>

- Developed ocean wave modules for high-fidelity wave-resolving large eddy simulations of the urban, coastal, and extreme weather applications
- Conducted high-performance simulations using atmosphere model WRF, wave model SWAN, ocean model ROMS, and coupling system COAWST.

Graduate Research Assistant 2016-2020

Aerosol Transport Phenomenon Simulation using Large-Eddy Simulation

- Developed Eulerian-Eulerian multiphase model using LES with a hybrid numerical scheme and simulated transport of aerosolized oil droplets at Marine Atmosphere Boundary Layer
- Applied Finite-Volume method with third-order upwind-scheme for scalar and conservative interpolation for velocity to simulate particle transport phenomenon
- Used Hybrid pseudo-spectral method and finite-difference method to solve turbulent flow, projection method, and iterative solver for mass conservation and pressure Poisson equations

<u>High-fidelity Simulation of the Wave-Turbulence Interaction and the Generation of Langmuir</u> <u>Circulation</u>

- Developed high-fidelity DNS and LES solvers using Fortran, MATLAB, and Python start from scratch to study complex turbulent flows with wavy boundaries
- Deployed solvers on HPC platform (distributed memory MPI) to increase computing efficiency
- Designed post-processing algorithms to evaluate special statistics and identify flow structures
- Analyzed and visualized large simulation data set using Tecplot and Paraview

Beihang University

Graduate Research Assistant 2013-2016

<u>Numerical Simulation of the Wall-Bounded Turbulent Flows using new LES and RANS</u> <u>Turbulent models</u>

- Designed novel type of RANS/LES turbulent models to simulate wall-bounded turbulent flows, slashed computational costs 40% while ensuring the accuracy and stability of simulations
- Extended the scale-adaptive simulation model (SAS model) to the wall-bounded turbulent flows by introducing into a new 3D Von Karman length scale
- Evaluated and optimized the performance of a one-equation turbulent model (turbulent kinetic energy dependent only, KDO) in wall-bounded flow simulations

Selected Publications

- Li, M., Zhao, Z., Pandya, Y., Iungo, G.V., & Yang, D. (2019), "Large-eddy simulations of oil droplet aerosol transport in the marine atmospheric boundary layer," <u>Atmosphere</u>, vol. 10, 459.
- Li, M. & Yang, D. (2019), "Direct numerical simulation and statistical analysis of stress-driven turbulent Couette flow with a free-slip boundary." <u>Physics of Fluids</u>, vol. 31, 085113.
- Hu, X., Lei, L., Qiu, N., Di, Y., and Li, M. (2019), "A MapReduce-based improvement algorithm for DBSCAN." Journal of Algorithms & Computational Technology, vol. 12, pp. 53.
- Xu, J., Li, M., & Gao, G. (2017), "A dynamic hybrid RANS/LES approach based on the local flow structure." <u>International Journal of Heat and Fluid Flow</u>, vol. 67, pp. 250-260.
- Song, Y. F., Xu, J., Zhang, Y., Li, M. (2017), "Research of Compressible Turbulence Model in Shock Wave/Boundary-Layer Interaction Flow at a Compression Corner." <u>Tuijin Jishu/Journal</u> of Propulsion Technology, vol. 38, pp. 281-288
- Xu, J., Li, M., Zhang, Y., & Chen, L. (2016), "Wall-modeled large eddy simulation of turbulent channel flow at high Reynolds number using the von Karman length scale." <u>Theoretical and</u> <u>Computational Fluid Dynamics</u>, vol. 30, pp. 565-577.

Selected Conference Presentations

- Li, M. & Yang, D., "Wave-resolved direct numerical simulation of the generation of Langmuir circulations under progressive waves," at 72nd American Physical Society Division of Fluid Dynamics Annual Meeting, Seattle, WA, USA, November 25, 2019.
- Li, M., Pandya, Y., Iungo, G.V. & Yang, D., "Large-eddy simulations of oil aerosol plume dispersion in marine atmospheric boundary layer," at Gulf of Mexico Oil Spill & Ecosystem Science Conference, Tampa, FL, USA, February 5, 2020.
- Li, M., Pandya, Y., Iungo, G.V. & Yang, D., "Large-eddy simulations of oil aerosol plume dispersion in marine atmospheric boundary layer," at Gulf of Mexico Oil Spill & Ecosystem Science Conference, Tampa, FL, USA, February 5, 2020.
- Pandya, Y., Li, M., Yang, D. & Iungo, G., "Effects of aerosolized droplets on aerodynamic Roughness in the marine atmospheric boundary layer," at Gulf of Mexico Oil Spill & Ecosystem Science Conference, Tampa, FL, USA, February 5, 2020.
- Pandya, Y., Li, M., Yang, D. & Iungo, G., "Coastal zone wind-wave dynamics in the marine atmospheric boundary layer," at American Geophysical Union Annual Fall Meeting, Online, USA, December 16, 2020.