ELECTRON TRANSPORT

 

Thermodynamics

 

·        NADH oxidation is highly exergonic.

 

NAD+ + H+ + 2e NADH            E1°’ = -0.315 V           (1)

 

0.5 O2 + 2H+ + 2e H2O            E2°=  0.815 V            (2)

 

(2) – (1)

 

0.5 O2 + NADH + H+ H2O + NAD+       

DE°’ = E2°-  E1°’ = 1.13 V

DG°’ = -nFDE°’ = -2 ´ 96494 J V-1 mol-1 ´ 1.13 V = -218 kJ mol-1

 

·        In Comparison:

 

ATP ® ADP + Pi            DG°’ = -30.5 kJ mol-1

 

ATP ® AMP + PPi         DG°’ = -32.2 kJ mol-1

 

Efficiency of ATP Synthesis

 

·        (3 ´ 30.5/218) ´ 100% = 42%     under biological standard conditions

 

·        ~70% under physiological conditions in active mitochondria

 

 

Major Electron Transport Carriers

 

·        NADH; FMN; Q; FeS; Cyt (bL + bH); Cyt c1; Cyt c; Cyt (a + a3); CuA; CuB; O2

·        Hydrogen carriers:  FMN, NAD+, Q

FMN + H+ + e FMNH·                  FMNH·  + H+ + e FMNH2

or FMN + 2H+ + 2e FMNH2

NAD+ + 2H+ + 2e NADH + H+

Q + H+ + e QH·                            QH· + H+ + e QH2     

or Q + 2H+ + 2e QH2

·        H+ + e = H· (hydrogen atom)            H+ + 2e = H-  (hydride)

·        E carriers: FeS, cytochromes (e-transport heme proteins), copper proteins

Fe3+ + e Fe2+

Cu2+ + e Cu+

 

 


 

 

Sequence of Electron Transport and

Four Complexes In The E-Transport Chain

 

See Fig. 17-8 for Complexes I, III, and IV.

 

Complex I (NADH-Coenzyme Q Oxidoreductase)

 

                            4 H+

                             

·        NADH ® FMN ® 2 FeS ® Q

                                            

·        Contains 1 FMN and 6 to 7 iron-sulfur clusters (FeS).

·        Passes 2e from NADH to Q.

·        Pumps 4H+ from mitochondrion matrix to cytosol. 

·        Mechanism not well understood.  One model:  differential H+ binding and release resulting from protein conformational change.

·        H-bonded groups in proteins and water are like a proton wire.

 

Strong acids with lower pKas.   AH A- + H+  with high tendency for à.

Strong bases with higher pKas.  B + H+ BH+ with high tendency for à.

 

Place AH next to B:  AH + B à A- + BH+  

Proton is transferred from AH to B.

 

Bacteriorhodopsin as a model for proton pump through a proton wire (Fig. 17-12)

 

Complex II (Succinate-Coenzyme Q Oxidoreductase)

 

·        Contains succinate dehydrogenase covalently bound FAD (Succinate to Fumarate), 3 Fe-S clusters and Cyt b560.

                                    2 H+                                                                         

                                     

·        Succinate   ® FAD ®    3 FeS clusters® Cyt b560 ® Q

                (succinate DH)  

                                                                                

·        I and II do not operate in series.

 

Complex III (Coenzyme Q-Cytochrome c Oxidoreductase or cytochrome bc1)

 

·        Contains 2 Cyt b (bL and bH for low and high potentials, respectively), 1 Cyt c1 and 1 Fe-S cluster.

 

           4 H+ (to cytosol via Q cycle)

                  

·        QH2 ® ® ® ® Cyt c1 ® Cyt c

                  

                 2 H+ (Matrix)


 

Q Cycle

 

See Fig. 17-15.

Cycle 1:  QH2 + Cyt c1 (Fe3+) ® Q- + Cyt c1 (Fe2+) + 2 H+ (cytosolic)

·        Obtain 1 QH2 from Complex I.

·        Pump 2 H+ to cytosol.

·        Donate 1e to ISP and in turn to c1.

·        Generate 1 Q-.

Cycle 2:

QH2 + Q- + Cyt c1 (Fe3+) + 2 H+ (mitochondrial) ® Q + QH2 + Cyt c1 (Fe2+) + 2 H+ (cytosolic)

·        Obtain another QH2 from Complex I.

·        Pump 2 H+ to cytosol.

·        Donate 1e to ISP and in turn to c1.

·        Taking up 2 H+ from mitochondrial matrix.

·        Generate 1 QH2.  No net gain or loss of QH2.

NET OUTCOME

QH2 + 2 Cyt c1 (Fe3+) + 2 H+ (mitochondrial) ® Q + 2 Cyt c1 (Fe2+) + 4 H+ (cytosolic)

 

·        Obtain 1 QH2 from Complex I.

·        4 H+ pumped to cytosol.

·        2 c1 reduced.

·        Uptake 2 H+ from mitochondrial matrix.

 

Between Complex III and Complex IV

 

·        Cyt c. 

·        Loosely bound to the outer surface of the inner mitochondrial membrane.

·        Shuttles electrons between Cyt c1 and Cyt c oxidase (Complex IV).

 

Complex IV (Cytochrome c Oxidase)

·        Contains Cyt a, Cyt a3, CuA, and CuB.

·        (CuACyt a) are of a lower potential.  (Cyt a3CuB) are of a higher potential.

·        2 Cyt c(Fe2+) + 2 H+ + 0.5 O2 ®  2 Cyt c(Fe3+) + H2O

·        As shown in Fig. 17-8, 2H+ are transferred to cytosol by complex IV by unknown mechanism.

 

Physiological E-Donating Systems

 

·        b-Hydroxybutyrate Dehydrogenase

     b-Hydroxybutyrate + NAD+ ®  Acetoacetate + NADH

 

·        Succinate DH

     Succinate + FAD ®  Fumarate + FADH2

 

Artificial E-Donating Systems

 

·        Ascorbate ®  Tetramethyl-p-phenylenediamine (TMPD) ®  Cyt c

 

Physiological E Acceptor

 

·        O2 as the acceptor of e from Complex IV.

 

Artificial E Acceptors

 

·        2. Fe(CN6)3- accepts e from Cyt cred.


 

THREE SITES OF PHOSPHORYLATION

 

I. Thermodynamic Consideration  (Fig. 17-7)

 

·        Site 1 (Complex I)

 

NAD+ + 2H+ + 2e ® NADH + H+       E°’ = -0.315 V         (1)

Q + 2H+ + 2e ® QH2                         E°=  0.045 V         (2)

 

(2 ) – (1)       NADH + H+ + Q ® NAD+ + QH2     

DE°’ = 0.045 + 0.315 = 0.36 V

DG°’ = -69.5 kJ mol-1

 

·        Complex II Is Not a Site for Phosphorylation

 

FADH2 + Q ® FAD + QH2  

DE°’ = 0.045 + 0.04 = 0.085 V    

DG°’ = -16.4 kJ mol-1

 

·        Site 2 (Complex III)

 

QH2 + 2 Cyt cox ® Q + 2 Cyt cred       

 

DE°’ = 0.235 - 0.045 = 0.19 V

DG°’ = -36.7 kJ mol-1

 

·        Note:  The number of electrons involved is taken into consideration when DE°’ is converted to DG°’ (DG°’ = -nFDE°’ where n is the number of electrons and F = 96,494 J V-1 mol-1).

 

·        Site 3 (Complex IV)

 

2 Cyt cred + 2 H+ + 0.5 O2 ®  2 Cyt cox + H2O

     

DE°’ = 0.815 - 0.235 = 0.58 V

DG°’ = -112 kJ mol-1

 

II. Specific Inhibitors  (Fig. 17-7)

 

·        Rotenone and Amytal block Complex I.

·        Antimycin A blocks Complex III.

·        CN- blocks Complex IV.

 

III. Partial Reactions and P/O (or P/2e) Ratio  (Fig. 17-7)

 

P/O (or P/2e) ratio is the ratio of the number of ATP synthesized over the number of oxygen ATOM (= 0.5 O2) reduced to water.

 

E Donor

E Acceptor

P/O  or P/2e

b-Hydroxybutyrate (or NADH)

1/2   O2

3

Succinate (or FADH2)

1/2   O2

2

b-Hydroxybutyrate (or NADH)

Fe(CN6)3-

2

Succinate (or FADH2)

Fe(CN6)3-

1

Ascorbate

1/2   O2

1

 

Note:

·        Phosphorylation and oxidation are tightly coupled.  [Substrate (e.g. b-hydroxybutyrate or succinate) + Pi + O2] does not lead to continuous oxygen consumption until ADP is added.

 

·        P/O ratios may not be exactly integers.

 

 

IV. Reconstitution

 

Reconstitution of active individual sites using isolated components and phospholipid vesicles  has been done.