ELECTRON TRANSPORT |
Thermodynamics
·
NADH oxidation
is highly exergonic.
NAD+ + H+
+ 2e ⇌ NADH E1°’ = -0.315 V
(1)
0.5 O2 + 2H+
+ 2e ⇌ H2O E2°’ =
0.815 V (2)
(2) – (1)
0.5 O2 + NADH + H+ ⇌
H2O + NAD+
DE°’ = E2°’ -
E1°’ = 1.13 V
DG°’ = -nFDE°’ = -2 ´ 96494 J V-1 mol-1 ´ 1.13 V = -218 kJ mol-1
·
In Comparison:
ATP ® ADP + Pi DG°’ = -30.5 kJ mol-1
ATP ® AMP + PPi DG°’ = -32.2 kJ mol-1
Efficiency of ATP Synthesis
·
(3 ´ 30.5/218) ´ 100% = 42% under biological standard conditions
·
~70% under
physiological conditions in active mitochondria
Major Electron Transport Carriers
·
NADH;
FMN; Q;
·
Hydrogen
carriers: FMN, NAD+, Q
FMN + H+ + e ⇌
FMNH· FMNH· + H+ + e ⇌ FMNH2
or FMN + 2H+ + 2e ⇌
FMNH2
NAD+ + 2H+ + 2e ⇌
NADH + H+
Q + H+ + e ⇌
QH·
QH· + H+ + e ⇌
QH2
or Q + 2H+ + 2e ⇌
QH2
·
H+
+ e = H·
(hydrogen atom) H+
+ 2e = H-
(hydride)
·
E carriers:
Fe3+ + e ⇌
Fe2+
Cu2+ + e ⇌ Cu+
Sequence of Electron Transport and Four Complexes In The E-Transport
Chain |
See Fig. 17-8 for
Complexes I, III, and IV.
Complex I (NADH-Coenzyme Q Oxidoreductase)
4 H+
↑
·
NADH ® FMN ® 2
·
Contains 1 FMN
and 6 to 7 iron-sulfur clusters (
·
Passes 2e from
NADH to Q.
·
Pumps 4H+
from mitochondrion matrix to cytosol.
·
Mechanism not
well understood. One model: differential H+ binding and
release resulting from protein conformational change.
·
H-bonded
groups in proteins and water are like a proton wire.
Strong acids
with lower pKas. AH ⇌ A- + H+ with high tendency for à.
Strong bases with
higher pKas. B + H+ ⇌ BH+ with high tendency
for à.
Place AH next to
B: AH + B à A- + BH+
Proton is transferred
from AH to B.
Bacteriorhodopsin as a model for proton pump through a proton wire (Fig.
17-12)
Complex II (Succinate-Coenzyme Q Oxidoreductase)
·
Contains
succinate dehydrogenase covalently bound FAD (Succinate to Fumarate), 3 Fe-S
clusters and Cyt b560.
2 H+
↑
·
Succinate ® FAD ® 3 FeS clusters® Cyt b560 ® Q
(succinate DH)
·
I and II do
not operate in series.
Complex III (Coenzyme Q-Cytochrome c Oxidoreductase or cytochrome bc1)
·
Contains 2 Cyt b (bL and bH
for low and high potentials, respectively), 1 Cyt c1 and 1 Fe-S
cluster.
4 H+ (to cytosol via Q
cycle)
↑
·
QH2
®
®
®
®
Cyt c1 ® Cyt c
↑
2 H+ (Matrix)
Q Cycle |
See Fig. 17-15.
Cycle 1: QH2 + Cyt c1 (Fe3+) ® Q-• + Cyt c1 (Fe2+)
+ 2 H+ (cytosolic)
·
Obtain 1 QH2 from Complex I.
·
Pump 2 H+ to cytosol.
·
Donate 1e to ISP and in turn to c1.
·
Generate 1 Q-•.
Cycle 2:
QH2 + Q-• + Cyt c1 (Fe3+)
+ 2 H+
(mitochondrial) ® Q + QH2
+ Cyt c1
(Fe2+) + 2 H+ (cytosolic)
·
Obtain
another QH2 from Complex I.
·
Pump 2 H+ to cytosol.
·
Donate 1e to ISP and in turn to c1.
·
Taking up 2 H+ from mitochondrial matrix.
·
Generate 1 QH2. No net
gain or loss of QH2.
QH2 + 2 Cyt
c1 (Fe3+)
+ 2 H+ (mitochondrial)
®
Q + 2 Cyt c1 (Fe2+) + 4 H+
(cytosolic)
·
Obtain 1 QH2 from Complex I.
·
4 H+ pumped to cytosol.
·
2 c1 reduced.
·
Uptake 2 H+ from mitochondrial matrix.
Between Complex III and Complex IV
·
Cyt c.
·
Loosely bound
to the outer surface of the inner mitochondrial membrane.
·
Shuttles
electrons between Cyt c1 and Cyt c oxidase (Complex IV).
Complex IV
(Cytochrome c Oxidase)
·
Contains
Cyt a, Cyt a3, CuA,
and CuB.
·
(CuACyt a) are of a lower potential. (Cyt a3CuB) are of a
higher potential.
·
2
Cyt c(Fe2+)
+ 2 H+ + 0.5 O2 ® 2 Cyt c(Fe3+) + H2O
·
As
shown in Fig. 17-8, 2H+ are transferred to cytosol by complex IV by
unknown mechanism.
Physiological E-Donating Systems |
·
b-Hydroxybutyrate Dehydrogenase
b-Hydroxybutyrate + NAD+ ® Acetoacetate + NADH
·
Succinate DH
Succinate + FAD ® Fumarate + FADH2
Artificial E-Donating Systems |
·
Ascorbate ® Tetramethyl-p-phenylenediamine (TMPD) ® Cyt
c
Physiological
E Acceptor |
·
O2 as the
acceptor of e from Complex IV.
Artificial E
Acceptors |
·
2. Fe(CN6)3- accepts e from Cyt cred.
THREE SITES
OF PHOSPHORYLATION |
I. Thermodynamic Consideration (Fig. 17-7)
·
Site 1 (Complex I)
NAD+ + 2H+
+ 2e ®
NADH + H+ E°’ = -0.315 V (1)
Q + 2H+ +
2e ®
QH2 E°’ = 0.045 V (2)
(2 ) – (1) NADH + H+ + Q ® NAD+ + QH2
DE°’ = 0.045 + 0.315 =
0.36 V
DG°’ = -69.5 kJ mol-1
·
Complex II Is Not a Site for Phosphorylation
FADH2 + Q ® FAD + QH2
DE°’ = 0.045 + 0.04 =
0.085 V
DG°’ = -16.4 kJ mol-1
·
Site 2 (Complex III)
QH2
+ 2 Cyt cox ® Q + 2 Cyt cred
DE°’ = 0.235 - 0.045 =
0.19 V
DG°’ = -36.7 kJ mol-1
·
Note: The number of electrons involved is taken
into consideration when DE°’ is converted to DG°’ (DG°’ = -nFDE°’ where n is the
number of electrons and F = 96,494 J V-1 mol-1).
·
Site 3 (Complex IV)
2 Cyt
cred
+ 2 H+ + 0.5 O2 ® 2 Cyt cox + H2O
DE°’ = 0.815 - 0.235 = 0.58 V
DG°’ = -112 kJ mol-1
II. Specific Inhibitors
(Fig. 17-7)
·
Rotenone and Amytal block Complex I.
·
Antimycin A blocks Complex III.
·
CN- blocks
Complex IV.
III. Partial Reactions and P/O (or P/2e) Ratio (Fig. 17-7)
P/O (or P/2e) ratio
is the ratio of the number of ATP synthesized over the number of oxygen ATOM (=
0.5 O2) reduced to water.
E Donor |
E Acceptor |
P/O
or P/2e |
b-Hydroxybutyrate (or NADH) |
1/2 O2 |
3 |
Succinate (or FADH2) |
1/2 O2 |
2 |
b-Hydroxybutyrate (or NADH) |
Fe(CN6)3-
|
2 |
Succinate (or FADH2) |
Fe(CN6)3-
|
1 |
Ascorbate |
1/2 O2 |
1 |
Note:
·
Phosphorylation
and oxidation are tightly coupled.
[Substrate (e.g. b-hydroxybutyrate or succinate) + Pi + O2] does not
lead to continuous oxygen consumption until ADP is added.
·
P/O ratios may
not be exactly integers.
IV. Reconstitution
Reconstitution of
active individual sites using isolated components and phospholipid
vesicles has
been done.