Nanomagnetic transducers: Left to right: 30nm wide longitudinal writer;
60nm wide perpendicular writer; nanoprobe with 40nm x 40nm x 10nm apex.
The current research activities are focused on applications of nanocrystalline materials and nanoscale devices for achieving extremely high density recording (above 1Terabit/in 2 ). The current state-of-the-art in magnetic recording is 160x40x10nm magnetic features (corresponding to areal density of 100Gbin/in 2) recorded into a magnetic recording medium. The individual magnetic grains forming the recording medium are ~9nm in diameter. At these dimensions, the conventional recording schemes employed today are rapidly approaching the fundamental (superparamagnetic) limit in areal bit density, above which the recording data become unstable. It is widely believed that longitudinal recording will run out of steam at approximately 200Gbin/in 2 . Perpendicular magnetic recording will enable to sustain the current great strides in technological advances for the next several generations of mass storage solutions. The technology is technically the closest alternative to conventional longitudinal recording, while it is capable of extending the superparamagnetic density limit beyond what is achievable with longitudinal recording. The recording densities above 1Terabit/in 2 (recording features as small as 50x12x10nm) are conceivable utilizing perpendicular recording. To support such a nanoscale technology, major innovations in both magnetic recording heads and media are necessary.
The research at the Center for Nanomagnetic Systems is supported by National Science Foundation, National Institute of Health, Office of Naval Research, and Information Storage Industry Consortium.