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Adult neurogenesis involves the generation of new neurons, particularly in the dentate

gyrus of the hippocampus. Decreased hippocampal neurogenesis has been implicated

in both animal models of depression and in patients with major depressive disorder

(MDD), despite some inconsistency in the literature. Here, we build upon current models

to generate a new testable hypothesis, linking impaired neurogenesis to downstream

psychological outcomes commonly observed in MDD. We contend that disruption

in adult neurogenesis impairs pattern separation, a hippocampus-dependent function

requiring the careful discrimination and storage of highly similar, but not identical, sensory

inputs. This, in turn, can affect downstream processing and response selection, of

relevance to emotional wellbeing. Specifically, disrupted pattern separation leads to

misperceived stimuli (i.e., stimulus confusion), triggering the selection and deployment

of established responses inappropriate for the actual stimuli. We speculate that this

may be akin to activation of automatic thoughts, described in the Cognitive Behavior

Theory of MDD. Similarly, this impaired ability to discriminate information at a fundamental

sensory processing level (e.g., impaired pattern separation) could underlie impaired

psychological flexibility, a core component of Acceptance and Commitment Therapy

of MDD. We propose that research is needed to test this model by examining the

relationship between cognitive functioning (e.g., pattern separation ability), psychological

processes (e.g., perseveration and psychological inflexibility), and neurogenesis, taking

advantage of emergingmagnetic resonance spectroscopy-based imaging that measures

neurogenesis in-vivo.
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INTRODUCTION

Major depressive disorder (MDD) is characterized by a triad
of mood, neuro-vegetative, and cognitive symptoms (American
Psychiatric Association, 2013). MDD is most prevalent among
young adults (18–25 years old), particularly women, and is the
second leading cause of disability worldwide (National Survey
on Drug Use Health, 2015). Despite significant progress over
the last few decades, treatment efficacy remains sub-optimal for
the majority of patients with MDD (National Institute of Mental
Health, 2015). Moreover, research has yet to fully elucidate the
underlying pathophysiology. This may not be surprising, given
the complexity and clinical heterogeneity of MDD.

In this paper, we build upon current models (Hanson et al.,
2011; Shelton and Kirwan, 2013; Hill et al., 2015; Lucassen
et al., 2015; Miller and Hen, 2015; Yun et al., 2016) to
propose that reduced adult neurogenesis in the dentate gyrus
of the hippocampus causes deficits in pattern separation and
downstream impairment in information processing. This, in
turn, contributes to MDD presentation, at least in a subgroup
of patients. We begin by reviewing the nascent literature on
hippocampal neurogenesis in MDD. We then link neurogenesis
and pattern separation in the context of MDD, and complete the
review with a speculation regarding the potential downstream
impairment in information processing contributing to cognitive
patterns characteristic of patients with MDD.

HIPPOCAMPAL NEUROGENESIS AND
MDD

Neurogenesis involves generating new, functional neurons. As
such, it has traditionally been thought to occur only during
embryogenesis and the perinatal stages of the mammalian
nervous system development. However, over the past two
decades, research has firmly established that newborn neurons
are generated in two germinal zones of the postnatal and adult
brain of rodents as well as primates, including humans: the
subgranular zone of the dentate gyrus of the hippocampus
(Altman, 1962; Palmer et al., 1997; Eriksson et al., 1998; Knoth
et al., 2010; Miller et al., 2013) and the subventricular zone of
the lateral ventricles (Morshead et al., 1994; Doetsch et al., 1997;
Quinones-Hinojosa et al., 2006; Bergmann et al., 2012; Curtis
et al., 2012). Adult-generated neurons form synaptic connections
and integrate into the local circuitry. In the dentate gyrus, it
is estimated that about 9,000 newborn neurons are generated
daily in the adult rat, replacing about 40% of the structure over
the life-span (Snyder and Cameron, 2012). In humans, carbon-
dating estimated that about 700 newborn neurons are added
to the hippocampal adult circuitry daily, replacing about 30%
of the structure over the life-span (Spalding et al., 2013). These
data indicate that the number of new neurons incorporated
into the hippocampal circuitry in the adult brain is likely to be
large enough to affect hippocampal function both in rodents
and in humans. Importantly, based on animal studies, these
new neurons participate in the modulation and refinement of
established neuronal circuitry, affecting both regional physiology
and the functional connectivity of more distant brain regions,

such as the prefrontal cortex, amygdala, and other structures
within the limbic system (van Praag et al., 2002; Ramirez-Amaya
et al., 2006; Toni et al., 2007, 2008; Vivar et al., 2012; Vivar
and van Praag, 2013). The integration of these new neurons
into the hippocampal circuitry suggests an important role for
adult neurogenesis in hippocampus-dependent functions. For
instance, newly-generated neurons in the murine dentate gyrus
contribute to the encoding of new memories (Farioli-Vecchioli
et al., 2008; Jessberger et al., 2009), spatial learning (Snyder
et al., 2005; Dupret et al., 2008; Clelland et al., 2009), pattern
separation (Sahay et al., 2011a,b), affect regulation (Ibi et al.,
2008), and cognitive flexibility (Burghardt et al., 2012), which,
coincidentally, can all be affected in individuals diagnosed with
MDD (Bremner et al., 2004; Deveney and Deldin, 2006; Gould
et al., 2007; Joormann and Gotlib, 2010; Shelton and Kirwan,
2013).

Dysregulated neurogenesis may contribute to MDD, anxiety
and other neuropsychiatric disorders (Lucassen et al., 2015).
Due to the lack of precise animal models of MDD, studies
utilize different stressors to induce depressive-like states. In
rodents, both acute psychosocial stress (e.g., exposure to a
social dominance paradigm, social instability or social isolation),
as well as chronic stress reduce hippocampal neurogenesis
(Thomas et al., 2007; Brummelte andGalea, 2010; Castilla-Ortega
et al., 2011; McCormick et al., 2012). Similarly, social isolation-
stress in primates decreases hippocampal neurogenesis and
concurrently induces depressive and anxiety-like phenotypes,
including anhedonia and self-defeating behavior (Perera et al.,
2011). Moreover, the lasting effects of chronic stress during
early life include the inhibition of adult neurogenesis (Karten
et al., 2005; Korosi et al., 2012), and potentiation of anxiety-
like behaviors (de Andrade et al., 2013). However, stress-
related effects are dose-dependent, and a “short” exposure to
“weaker” stressors may not affect hippocampal neurogenesis
(Kempermann, 2002).

While the debate on the association ofMDD and hippocampal
adult neurogenesis continues (Boldrini et al., 2009, 2013; Hayes
et al., 2013; Huang et al., 2013; Wu et al., 2014; Miller and
Hen, 2015), the most convincing data on this association
comes from studies examining the impact of interventions
with anti-depressant potential on neurogenesis. In fact,
therapeutic interventions that promote mental well-being
stimulate hippocampal neurogenesis. For instance, routine
aerobic exercise reduces learned helplessness and depressive-like
behaviors (i.e., sucrose preference, forced swim test, etc.) in
animals (Binder et al., 2004; Yau et al., 2011; Liu et al., 2013),
endogenous corticosterone (Starzec et al., 1983), stress-mediated
responses from the hypothalamic-pituitary-adrenal (HPA) axis
(Luger et al., 1987; Campeau et al., 2010), and also promotes
neurogenesis in the dentate gyrus (van Praag et al., 1999;
Bjornebekk et al., 2005; Kronenberg et al., 2006; Marlatt et al.,
2012; Dery et al., 2013). Similarly, environmental enrichment
enhances the proliferation of neural stem cells in the dentate
gyrus of mice, while concurrently improving depressive-like
behaviors (Kempermann, 2002; Veena et al., 2009a,b; Jha et al.,
2011). Finally, antidepressant treatments, such as SSRIs and
electroconvulsive shock (equivalent to human electroconvulsive
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therapy, ECT) increase neurogenesis specifically in the
hippocampus and not in other neurogenic regions (Santarelli
et al., 2003; Kodama et al., 2004; David et al., 2009; Klomp et al.,
2014). In fact, animal research indicates that electroconvulsive
shock is one of the strongest stimuli for hippocampal adult
neurogenesis (Madsen et al., 2005; Warner-Schmidt et al., 2008;
Chen et al., 2009). In rats, even a single electroconvulsive shock
can increase neurogenesis by 67–197% (Segi-Nishida et al., 2008;
Chen et al., 2009). In clinical practice, ECT is administered
as a series of treatments over a number of weeks. The closest
analog to this paradigm examined the effect of electroconvulsive
stimulations in adult monkeys and found a 4-fold increase in
dentate subgranular zone cell proliferation (Santarelli et al.,
2003; Perera et al., 2007). Notably, the maturation period of
newly-generated neurons in the dentate gyrus appears consistent
with the delay for the full therapeutic effects of antidepressants
to become manifest (Esposito et al., 2005; Ngwenya et al., 2006).
In sum, these preclinical findings suggest that adult neurogenesis
may be modulated by factors associated with MDD, including
chronic stress (Cohen et al., 2007), and activation of the HPA
axis (Pariante and Lightman, 2008).

While pre-clinical findings do not always translate to humans,
research has also found evidence potentially implicating impaired
hippocampal neurogenesis in MDD. First, MDD has long been
associated with abnormalities in the limbic system, including
the hippocampus (MacQueen et al., 2003; Whittle et al., 2014).
This has been highlighted in a recent meta-analysis reporting
that smaller hippocampal volumes are the most consistent
sub-cortical abnormality in patients with MDD, particularly
adolescents and emerging adults (i.e., <21 years old), as well
as in those with recurrent MDD (Schmaal et al., 2016). More
specifically, high-resolution volumetric magnetic resonance
imaging (MRI) and postmortem studies have found decreased
dentate gyrus size in unmedicated patients with MDD (Boldrini
et al., 2009, 2013; Huang et al., 2013). In fact, the number of
granule cells, derived from neural progenitor cells, was smaller
in the anterior and mid regions of the dentate gyrus of untreated
MDD patients (Boldrini et al., 2013). Interestingly, for untreated
MDD, younger age of MDD onset correlated with fewer granule
cells in the anterior dentate gyrus. Moreover, untreated patients
with MDD appear to have a smaller number of dividing cells in
the dentate gyrus compared to healthy controls (Boldrini et al.,
2009). Of note, while this finding was not significant likely due to
lack of statistical power (n = 5 for unmedicated MDD, n = 7 for
healthy controls), the group differences were quite large (Cohen’s
d effect size ≥ 1.2). Although the exact mechanism is not yet
known, these findings suggest that cell division and granule cell
survival in the dentate gyrus are reduced in unmedicated MDD
patients. Nonetheless, the number of cells generated by adult
neurogenesis and their corresponding volume cannot entirely
account for the observed change in hippocampal volume in
patients with MDD. In fact, hippocampal volume in patients
with MDD is likely the result of various factors, including
reduced neuronal number and size, synaptic density, dendritic
complexity, axonal hypotrophy and glial cell density (Stockmeier
et al., 2004; Duman et al., 2016). Rather, associated changes in
local brain circuitry and glial cells, including secondary apoptosis,
could follow impaired neurogenesis in MDD, resulting in the

volumetric differences (Wiskott et al., 2006; Kubera et al., 2011;
Lee et al., 2012). Of course, additional research is needed to
more convincingly determine whether and to which extent
neurogenesis is impaired in MDD and how this contributes to
the observed volumetric and functional brain changes.

While the evidence reviewed above suggests the presence
of a link between reduced hippocampal adult neurogenesis
and MDD, preclinical and clinical studies have also reported
findings that are inconsistent with this hypothesis (Miller and
Hen, 2015). For instance, exposure to several stress models
failed to reduce hippocampal neurogenesis in rodents (Hanson
et al., 2011). Moreover, depressive-like symptoms in rodents can
improve without change in hippocampal neurogenesis (Meshi
et al., 2006; Bessa et al., 2009). Similarly, depressive-like behaviors
in rodents improve following antidepressant treatment, despite
ablated hippocampal neurogenesis (Cowen et al., 2008; Holick
et al., 2008; Huang et al., 2008; David et al., 2009). Finally,
not all postmortem studies found reduced neurogenesis in
patients with MDD (Reif et al., 2006). However, these seemingly
contradictory findings may rather reflect differences in the
genetic strains of the rodents studied (Semerci and Maletic-
Savatic, 2016), the paradigms used to induce depressive-like
behaviors in the lab (e.g., unpredictable mild stress, cortisol-
induced depression), or the behaviors used as markers of
depressive-like states in animals (e.g., sucrose preference test,
learned helplessness, and forced swim test) (Santarelli et al., 2003;
Bjornebekk et al., 2005; Meshi et al., 2006; Bessa et al., 2009; Yau
et al., 2014). In human studies, mixed results could also reflect
methodological differences given that different biomarkers of
adult neurogenesis exist, with varying sensitivity (Reif et al., 2006;
Boldrini et al., 2009). Additionally, the presence of inconsistent
findings could also reflect the fact that neurogenesis may be
sufficient but not necessary for the development of depression
or for antidepressants to be efficacious. Moreover, decreased
neurogenesis may be associated with only certain characteristics
of MDD or with a subgroup of patients with MDD, given the
multifactorial nature of this disorder. For example, while in
preclinical research, hippocampal adult neurogenesis could be
virtually completely aborted experimentally, it can be affected to
varying degrees in patients with MDD, depending on etiology,
severity, subtype, and comorbidity. Finally, it is also important to
keep in mind that evolutionary pressures may have led to very
different roles played by hippocampal adult neurogenesis in the
human brain compared to that of a rodent.

PATTERN SEPARATION AS A COGNITIVE
MARKER OF ADULT NEUROGENESIS

The ability to discriminate and store similar, but not identical,
inputs of sensory information into distinct representations (e.g.,
form distinct memories) is referred to as “pattern separation.”
This function is notable for its dependence on hippocampal
adult neurogenesis (Aimone et al., 2011). In fact, rodents with
ablated neurogenesis in the dentate gyrus display impairments
in pattern separation ability (Clelland et al., 2009). In contrast,
increasing hippocampal neurogenesis leads to enhanced pattern
separation ability in animals (Sahay et al., 2011a). Hippocampal
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neurogenesis is also implicated in a variety of additional
processes, including cognitive flexibility (Burghardt et al., 2012),
hippocampus-dependent memory functions (Winocur et al.,
2006), spatial memory (Snyder et al., 2005; Dupret et al., 2008;
Clelland et al., 2009), memory encoding (Epp et al., 2016), and
executive function (Saxe et al., 2007). However, whether its role is
required for these functions remains to be determined (Cushman
et al., 2012; Groves et al., 2013; Swan et al., 2014; Park et al., 2015;
Svensson et al., 2016). A significant challenge in this research is
determining the magnitude of pattern separation demanded by
each of these cognitive task. It is those tasks that manipulate the
level of sensory discrimination by altering the degree of similarity
among study items that appear to most strongly correlate with
neurogenesis in the dentate gyrus (Hvoslef-Eide and Oomen,
2016).

In humans, experimental tasks which place a high demand on
sensory discrimination have been correlated with dentate gyrus
activity in healthy controls. Kirwan and Stark (2007) developed
a mnemonic similarity task that involves discriminating the
visual similarities of two different, but similar, images. Increased
performance on pattern separation while completing this task
was associated with increased blood oxygen level-dependent
(BOLD) signal in the dentate gyrus and CA3 region of the
hippocampus (Kirwan and Stark, 2007; Yassa and Stark, 2011).
Additionally, changes in dentate gyrus activity correlate with
the degree of mnemonic discrimination, with highly similar
lures resulting in increased BOLD signaling (Bakker et al., 2008;
Lacy et al., 2011). Moreover, Déry et al. found that aerobic
exercise, which is known to promote adult neurogenesis, was
prospectively associated with improved performance on the
mnemonic similarity task (Dery et al., 2013). In addition, they
observed a concurrent decline in depressive symptoms (Dery
et al., 2013). This is consistent with findings from a study in
college students, whereby performance on the same task was
inversely correlated with depression severity, as captured by
the Beck Depression Inventory (Shelton and Kirwan, 2013).
This should not be surprising in light of evidence showing
poor performance on hippocampus-dependent tasks in MDD
(MacQueen et al., 2003).

Additionally, MDD patients consistently display impairments
in long-term memory (Burt et al., 1995; Soderlund et al., 2014),
working memory (Rose and Ebmeier, 2006), negative emotional
bias (Gotlib and Joormann, 2010) and executive function,
including problem solving, attentional control, planning, and
cognitive inhibition (Frodl et al., 2006; Letkiewicz et al., 2014).
These deficits in executive functioning are positively associated
with depression severity (Snyder, 2013) and are typically
accompanied by structural and functional brain abnormalities
in the prefrontal cortex, ventromedial basal ganglia, amygdala,
and hippocampus (Frodl et al., 2006; Drevets et al., 2008). Thus,
while to our knowledge tasks that specifically activate the dentate
gyrus have not been directly examined in MDD, the available
evidence suggests performance would be suboptimal. To what
extent such impairment is specific to MDD would require
further investigation given that disrupted pattern separation
ability has been observed in schizophrenia (Das et al., 2014),
mild cognitive impairment (Stark et al., 2013), and amnesia

(Kirwan et al., 2012). Of note, these studies relied exclusively
on behavioral data without a neuroimaging component, making
it difficult to establish in humans the direct involvement of the
hippocampus in general, or the dentate gyrus in particular, in
pattern separation.

DEFICIT IN INFORMATION PROCESSING
AS A SEQUELAE OF PATTERN
SEPARATION IMPAIRMENT IN MDD

As previously noted, adult neurogenesis in the dentate gyrus
is necessary for the discrimination of new sensory information
(e.g., pattern separation). Thus, impaired pattern separation may
hamper one’s ability to process new information. We speculate
that this may explain some of the phenomena observed in
patients with MDD. For instance, individuals with impaired
pattern separation ability could mistake comparable stimuli as
being identical which, in turn, may lead to these distinct stimuli
triggering the same response (e.g., responding with sadness
to both negative and ambiguous events). In fact, individuals
diagnosed with or at-risk for depression and anxiety disorders
tend to interpret ambiguous stimuli as threatening or negative,
further supporting the hypothesis that pattern separation may
be deficient in MDD (Leppanen et al., 2004; Mogg et al.,
2006; Dearing and Gotlib, 2009). We contend that an impaired
ability to discriminate information at the fundamental sensory
processing level, in conjunction with a tendency to over-
generalize information, could underlie ruminative thinking,
perseverative or inflexible behavior, and cognitive rigidity;
all of which are common in MDD (Watkins and Teasdale,
2001; Marazziti et al., 2010). As such, it could explain the
mechanism underlying the activation of “automatic thoughts”
or “schemas,” described in the Cognitive Behavioral Therapy
model of MDD (Beck, 1979). For instance, the inability to
identify discrepancies between stimuli may lead to stimulus
“confusion,” triggering “responses” rehearsed and reinforced
in overlapping but not identical situations. When these
reflexive “responses” are cognitive, they are akin to automatic
thoughts. Such stereotypic responses to situations could also
disrupt psychological flexibility, highlighted in Acceptance and
Commitment Therapy as a core process (Hayes et al., 2013). It
refers to one’s propensity to willingly select behavioral responses
based on his/her chosen values, rather than reflexively reverting
to familiar actions (e.g., maladaptive habits), that may provide
short-term relief without regard to the long-term ramifications.
In fact, inflexibility related to impaired pattern separation may
also extend to social interactions and relationships where the
inability to take the perspective of others and adequately reflect
on one’s ownmotives, thoughts, desires and feelings are described
as mentalizing deficits (Fonagy, 2003; Fischer-Kern et al., 2013).
In this sense, neurogenesis, via pattern separation, may be
critical for the development of metacognitive function, with clear
implications for psychological well-being.

Finally, hippocampal neurogenesis also appears to contribute
to emotional regulation (Femenia et al., 2012). The psychological
regulation of emotions is a complex process, dependent on
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TABLE 1 | Proposed units of analysis to examine the role of pattern separation in depressive and anxiety disorders, presented in a Research Domain Criteria (RDoC)

matrix format (Cuthbert and Insel, 2013).

Construct Molecules Cells Circuits Behavior Self-Report

Pattern Separation Mono-Unsaturated Fatty Acids

Resonating at 1.28 ppm

Neurogenesis Frontal–Hippocampal–Dentate

Gyrus–Limbic System

Mnemonic

Similarity Task

*BDI, AAQ, YSQ, RFQ

The RDoC was introduced by the National Institute of Mental Health as a novel research framework to study psychopathology. It integrates several units of analysis spanning from the

basic genetic/molecular level to the behavioral level. *BDI, Beck Depression Inventory; AAQ, Acceptance and Action Questionnaire; YSQ, Young Schema Questionnaire; RFQ, Reflective

Functioning Questionnaire.

widespread neural networks, involving the limbic system,
prefrontal cortex, amygdala and hippocampus (Davidson and
Irwin, 1999; Lane et al., 2000; Phan et al., 2002). The ability to
regulate one’s emotions has been repeatedly found to be impaired
in MDD (Gotlib and Joormann, 2010). This, again, highlights the
potential functional impact of hippocampal adult neurogenesis in
modulating local and more distant brain circuitry, including that
involved in emotion regulation.

In sum, we speculate that impaired neurogenesis in MDD
disrupts performance in pattern separation. This, in turn, affects
higher-level processes resulting in cognitive and behavioral
rigidity thought to manifest in ruminative thinking, activation
of automatic thoughts and schemas, psychological inflexibility,
and deficient mentalizing. Future studies in MDD should,
therefore, aim not only to examine the association between adult
neurogenesis and behavioral performance on pattern separation
tasks, but also strive to investigate its association with the
functioning of higher-order psychological processes implicated
in MDD (e.g., psychological inflexibility, ruminative thinking,
and mentalizing). As such, a multi-level assessment could be
undertaken with different units of analysis (Table 1), similar to
what has been proposed in the Research Domain Criteria matrix
(Cuthbert and Insel, 2013).

CONCLUSION

This review proposes that reduced adult neurogenesis in
the dentate gyrus causes deficits in pattern separation and
downstream impairment in intra- and interpersonal information
processing, thus forming one of the mechanisms underlying
MDD and perhaps antidepressant efficacy. As such, future studies

should build on available findings from non-clinical samples
linking performance on pattern separation tasks to depression
severity in order to determine its association with psychological
functioning implicated in depressive and anxiety disorders,
such as catastrophizing, impaired psychological flexibility, and
mentalizing deficit (Beck et al., 1961; Young, 1994; Fonagy, 2003;
Hayes et al., 2013). This could be combined with emerging
state-of-the-art technology to assess neurogenesis in-vivo in
humans. In fact, magnetic resonance spectroscopy (MRS)-based
imaging is making progress toward this goal, measuring mono-
unsaturated fatty acids highly enriched in neuroprogenitor
cells that resonate at 1.28 ppm in the NMR spectrum (Ma
et al., 2011; Choi et al., 2017). While providing only an
indirect measure of neurogenesis, this state-of-the-art MRS-
based technique will be a valuable tool to supplement other
advances recently made in in-vivo imaging of hippocampal
adult neurogenesis in humans (Sierra et al., 2011; Ho et al.,
2013; Tamura and Kataoka, 2017; Van de Bittner et al.,
2017). Ultimately, any measure of hippocampal neurogenesis
would need to be combined with measures of functional brain
activity in order to provide further validation of the model we
propose.
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