SAMPLE MATH 2312 TEST

This is a one hour multiple choice test. There are 30 questions, and you must have a minimum of 20 correct answers to receive credit for this exam. There is no penalty for wrong answers.

- 1. $\cos 30^\circ \sin 45^\circ \tan 60^\circ \sin 90^\circ =$
- (a) $\frac{1-\sqrt{3}}{2}$ (b) $\frac{\sqrt{2}}{4} \sqrt{3}$ (c) $\frac{\sqrt{6}}{4} \cdot \sqrt{3}$ (d) $\frac{\sqrt{2}-2\sqrt{3}}{4}$ (e) $\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}$ 2. If $\tan \theta = -\frac{3}{4}$ and θ is in Quadrant IV, then $\sin \theta =$ (a) $-\frac{4}{5}$ (b) $-\frac{3}{5}$ (c) $\frac{3}{5}$ $(d)\frac{4}{5}$ (e) - 3 3. $sin(\cos^{-1}(-\frac{4}{5}))$ (a) - $\frac{4}{5}$ (b) - $\frac{3}{5}$ $(c) \frac{3}{5}$ (e) 5 (d) **5** 4. $\frac{1}{5}$ sin(40) $(c) = \frac{1 - \cos(2\theta)}{2}$ (a) $sin(2 \theta)cos(2 \theta)$ (b) $2\sin\theta$ (d) $2\sin\theta\cos\theta$ (e) $sin(2 \theta)$ 5. A circle with center (-1, 3) contains the point (3, 5). The radius of this circle is (e) 4 V 5 (a) $-2\sqrt{5}$ (b) 2 Y 5 (d) $2\sqrt{2}$ (c) 20 6. The equation of the line passing through the point (4, -3) and having slope -2 is (a) 2x + y = -5(b) 2x + y = 5 (c) x + 2y = -2(d) x + 2y = 10 (e) 2x - y = -57. If $f(x) = \frac{x+3}{-2}$ and $g(x) = x^3 - 2$, then f(g(-1)) =(a) -3(b) -1 (c) 0 (d) 1 (e) 3 8. The slope of a straight line perpendicular to the straight line which passes through the points (1, 2) and (3, -2) is (b) - 1/2 (d) Ż (c) 0 (a) - 2(e) 2 9. Let $f(x) = \frac{x^2 + 1}{(x + 2)(x - 3)}$. How many vertical asymptotes does the graph of f have (a) 0 (b) 1 (c) 2 (d) 3 (e) 6 10. If $f(x) = x^2 + 4$ and $g(x) = \sqrt{x}$, then g(f(x)) =(a) $\sqrt{x^2 + 4}$ (b) x + 4 (c) $\sqrt{x + 2}$ (e) x + 2(d) x + 2

- 11. A function f is defined by f(x) = x 2. Which one of the following points is on the graph of the inverse f?
 - (a) (-3, -1) (b) (-1, 3) (c) (1, -3) (d) (1, -1) (e) (3, 1)

12. The graph of the parabola $x = -y^2 + 2y - 3$

- (a) opens upward (b) opens downward (c) opens to the right
- (d) opens to the left (e) has one of the coordinate axis as its line of symmetry
- 13. Which one of the following is true for the graph of $y = e^{x}$?
 - (a) It crosses the x-axis exactly once.
 - (b) It is asymptotic to the negative y-axis.
 - (c) It rises as x decreases.
 - (d) It intersects the y-axis at (0, e).
 - (e) It crosses every line y = c exactly once where c is any positive constant.
- 14. Which one of the following polynomial is not n factor of $x^4 + x^3 x 17$ (a) $x^2 + x + 1$ (b) $x^2 + 1$ (c) $x^2 - 1$ (d) x + 1 (e) x - 1

15. Let $f(x) = \sqrt{3 - x} + \log_{10} x$. The domain of f consists of all real numbers x such that

(a)
$$x \le 3$$
(b) $0 \le x \le 3$ (c) $0 < x \le 3$ (d) $0 < x$ (e) $3 \le x$

- 16. Solve the following inequality:
 - (a) $\frac{2-k}{3} \le x \le \frac{2+k}{3}$ (b) $\frac{2-k}{3} \le x \le \frac{2+k}{3}$ (c) $\frac{2+k}{3} \le x \le \frac{2-k}{3}$ (d) $\frac{2+k}{3} \le x \le \frac{2-k}{3}$ (e) None of these.
- 17. Express as single fraction in lowest terms without zero or negative exponents:

$$\frac{3^{2}y^{3}x^{-2}}{t^{7}y} \qquad \frac{t^{3}y}{y^{-4}x^{3}y} \qquad (a) \ 9y^{2}t^{2}/x^{2} \qquad (b) \ x^{2}/9y^{2}t^{2} \qquad (c) \ ty^{2}/9x \\ (d) \ 9x/ty^{2} \qquad (e) \ None \ of \ these.$$

18. Solve for x: $3^x = 2^{(x+1)}$

- (a) x = log(2) log(1.5)(b) x = ln(2) ln(1.5)(c) x = ln(2) / ln(6)(d) x = log(2)/log(1.5)(e) None of these
- **19.** The area of ABC is: (See sketch)
 - (a) $5\sqrt{3}$ (b) $20\sqrt{3}$ (c) 10 (d) 20 (e) None of these.

ANSWERS:

1. c 2. b 3. c 4. a 5. b 6. b 7. c 8. d 9. c 10. a

11. a 12. d 13. e 14. b 15. c 16. a 17. d 18. d 19. e