Inferences from Small Samples

1. The Central Limit Theorem, which describes
 the mean, standard deviation and shape of the
 sampling distribution, depends on large samples
 \((n \geq 30)\).

2. What can be said about the mean, standard
 deviation and shape of the sampling
 distribution when \(n\) is small?

3. If the sample is drawn from approximately
 normal populations, the mean of the sampling
 distribution is the same for the sampling
 distribution of the means for large sample.

4. The shape is symmetric.

5. The standard deviation is not 1, it varies
 because the shape varies for different sample
 sizes.

“Student’s” \(T\) scores/distribution

1. Developed by W.S. Gosset in 1908.

2. Based on a ratio of the standard normal
 distribution function and the square root of the
 \(\chi^2\) distribution.
3. Given a sample of \(n \) observations, the statistics

\[
 t = \frac{\bar{x} - \mu}{s/\sqrt{n}}
\]

has a \(t \) distribution with \(n-1 \) degrees of freedom.

1. There are many different \(t \) distributions.

2. Every distribution resembles a standard normal distribution but each have “fatter” tails.

3. Small samples have more variability.

4. As the sample size approaches 30, the distribution becomes normal.

Degrees of Freedom

1. Number of independent units of observations in the sample relevant to estimation of a particular point estimate.

2. There are \(n \) observations as the initial units of information.

3. Only one observation is used to determine the point estimate.

4. The remaining observations are allowed to be any value, they are allowed to be “free”.
Mathematica Examples

How do T scores compare to Z scores?

Here are the two-tailed values at $p=0.05$

<table>
<thead>
<tr>
<th>Z Scores</th>
<th>1.96</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Scores</td>
<td></td>
</tr>
<tr>
<td>df=29</td>
<td>2.045</td>
</tr>
<tr>
<td>df=20</td>
<td>2.086</td>
</tr>
<tr>
<td>df=15</td>
<td>2.131</td>
</tr>
<tr>
<td>df=10</td>
<td>2.228</td>
</tr>
<tr>
<td>df= 5</td>
<td>2.571</td>
</tr>
</tbody>
</table>